Graph theory: Basic definitions


Đây là bài thứ hai của tôi về lý thuyết đồ thị. Các bạn có thể xem bài trước ở

[1] https://nttuan.org/2023/08/13/graph01/


Với mỗi tập hợp X, ký hiệu [X]^2 là tập gồm tất cả các tập con có 2 phần tử của X.

Định nghĩa 1. Một đồ thị là một cặp G=(V,E) các tập hợp sao cho E\subset [V]^2.

Như vậy, các phần tử của E là các tập con có 2 phần tử của V. Các phần tử của V được gọi là các đỉnh của đồ thị G, các phần tử của E được gọi là các cạnh của G. Đồ thị có tập các đỉnh V được gọi là đồ thị trên V. Cách thông thường để vẽ một đồ thị là mỗi đỉnh biểu thị bởi một dấu chấm và nối hai trong các dấu chấm này bởi một đường cong nếu hai đỉnh tương ứng tạo thành một cạnh.

Trong hình trên ta có một đồ thị trên V=\{1,2,\ldots,6\} với tập cạnh E=\{\{1;2\},\{2;3\},\{6;5\},\{2;4\}\}. Khi vẽ một đồ thị ta không quan tâm các đỉnh hay cạnh được vẽ thế nào, điều quan trọng duy nhất ở đây là hai đỉnh nào được nối với nhau. Tập các đỉnh của một đồ thị G được ký hiệu bởi V(G), trong khi tập cạnh của nó được ký hiệu bởi E(G). Ta thường không phân biệt đồ thị và tập cạnh hoặc tập đỉnh của nó. Chẳng hạn, ta có thể nói đỉnh v thuộc G (thay vì v\in V(G)), một cạnh e của G,

Số đỉnh của G được gọi là cấp của nó, ký hiệu bởi \mid G\mid. Một đồ thị G được gọi là hữu hạn nếu V(G)E(G) là hai tập hữu hạn, vô hạn nếu V(G) hoặc E(G) là một tập vô hạn. Trong bài giảng này ta chỉ xét các đồ thị hữu hạn. Khi \mid G\mid =0 ta gọi G là đồ thị rỗng, ký hiệu \emptyset. Nếu cấp của G bằng n thì ta cũng nói G là đồ thị trên n đỉnh.

Định nghĩa 2. Cho một đồ thị G. Đỉnh v của G được gọi là đầu mút của một cạnh e của G nếu v\in e. Nếu hai đầu mút của một cạnh exy thì ta nói e nối xy, hoặc e kề với hai đỉnh xy.

Một cạnh \{x;y\} thường được viết là xy hoặc yx.

Định nghĩa 3. Cho một đồ thị G. Hai đỉnh xy của G được gọi là kề nhau nếu \{x;y\} là một cạnh của G. Trong trường hợp đó ta nói xy là láng giềng của nhau.

Với mỗi đỉnh x, tập gồm tất cả các đỉnh kề với x được ký hiệu là N(x) hoặc N_G(x). Hai cạnh phân biệt ef của G được gọi là kề nhau nếu chúng có chung một đầu mút. Nếu tất cả các đỉnh của G là đôi một kề nhau ta nói G là một đồ thị đầy đủ. Một đồ thị đầy đủ trên n đỉnh được ký hiệu bởi K_n. K_3 được gọi là tam giác. Một cặp các đỉnh hay cạnh được gọi là độc lập nếu chúng không kề nhau.

Định nghĩa 4. Cho hai đồ thị G=(V,E)G^{\prime}=(V^{\prime},E^{\prime}). Một ánh xạ \varphi: V\to V^{\prime} được gọi đồng cấu từ G đến G^{\prime} nếu nó bảo toàn quan hệ kề giữa các đỉnh, nghĩa là \varphi (x)\varphi (y) kề nhau mỗi khi xy kề nhau. Nếu đồng cấu \varphi từ G đến G^{\prime} là một song ánh và \varphi^{-1} cũng là một đồng cấu, thì ta nói \varphi là một đẳng cấu hoặc GG^{\prime} là đẳng cấu.

Ta không phân biệt các đồ thị đẳng cấu, vì thế ta thường viết G=G^{\prime} để chỉ GG^{\prime} đẳng cấu. Trong một số trường hợp ta cũng nói G^{\prime} là một bản sao của G.

Continue reading “Graph theory: Basic definitions”

IMO1986/3


Một bài viết rất công phu về IMO1986/3.

Trên mỗi đỉnh của một ngũ giác đều có viết một số nguyên, sao cho tổng của chúng là dương. Nếu ba đỉnh liên tiếp được viết lần lượt các số x, y, z, với y<0, thì phép toán sau được phép thực hiện: x, y, z lần lượt được thay bởi x+y, -y, z+y. Thao tác như vậy được thực hiện lặp đi lặp lại miễn là có ít nhất một trong năm số âm. Xác định xem quy trình này có nhất thiết phải kết thúc sau một số hữu hạn bước hay không.

IMO2011/6: Miquel circles and Steiner line


Sau khi giải xong bài IMO2023/6 ([1]) tôi vào topic thảo luận về bài toán đó trên AoPS ([2]) để tham khảo các lời giải khác. Tôi thấy parmenides51 bình luận rằng trong lịch sử IMO thì bài này là bài khó thứ nhì trong các bài hình học, bài khó nhất là bài IMO2011/6. Do tò mò tôi vào trang chủ của IMO ([3]) xem bài toán đó thế nào? Dưới đây là đề bài:

IMO2011/6. Cho tam giác nhọn ABC với đường tròn ngoại tiếp \Gamma. Giả sử l là một tiếp tuyến nào đó của \Gamma. Gọi l_a, l_b, và l_c là những đường thẳng nhận được từ l bằng cách lấy đối xứng qua BC, CA, và AB, tương ứng. Chứng minh rằng đường tròn ngoại tiếp của tam giác tạo bởi ba đường thẳng l_a, l_b, và l_c tiếp xúc với \Gamma.

Trong điều kiện phòng thi thì thống kê chứng tỏ đây là bài hình học khó nhất trong lịch sử IMO! Ảnh sau tôi lấy từ [3], chỉ có 4 thí sinh làm được bài toán này. Một bài toán rất rất khó!

Chỉ có 4 thí sinh làm được bài IMO2011/6.

Tôi thích bài IMO2023/6 bởi nó khá lạ so với các bài toán hình thường làm, bài IMO2011/6 này hấp dẫn tôi bởi sự giản dị. Không thể tin được là có kết quả này! Tôi quyết định lập một topic trên blog của tôi để làm việc với bài toán mỗi khi có thời gian (công việc chính của tôi là dạy đại số và số học cho các học sinh Chuyên toán bậc THPT), nó có thể lấy của tôi vài ngày hay nhiều tuần. Khi tôi đang gõ dòng này thì topic đang ở trạng thái ĐỢI, giải được bài toán tôi sẽ bấm nút CÔNG BỐ. Ở mỗi thời điểm, có được kết quả mới nào tôi sẽ sửa vào đây. Lời giải được viết theo hình vẽ trong bài, các trường hợp khác được bỏ qua.

Continue reading “IMO2011/6: Miquel circles and Steiner line”

International Mathematical Olympiad: Shortlisted Problems


Trong bài này chúng tôi sẽ dịch đề bài từ các bộ IMO Shortlist sang tiếng Việt.

Các bạn có thể tải các tài liệu khác ở https://nttuan.org/download/ .

Continue reading “International Mathematical Olympiad: Shortlisted Problems”