Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 3


Các bạn có thể xem phần 2 tại địa chỉ https://nttuan.org/2017/04/09/topic-879/

Ngày thứ nhất

Bài 1. Cho số nguyên n \geq 4. Xét các số thực không âm x_1,\ldots,x_n thỏa mãn x_1 + \cdots + x_n = 1. Tìm giá trị lớn nhất của biểu thức T=x_1x_2x_3 + x_2x_3x_4 + \cdots + x_nx_1x_2.

Bài 2. Cho ABCD là tứ giác lồi không nội tiếp. Gọi hình chiếu vuông góc của A trên BC,BD,CDP,Q,R tương ứng, ở đây P,Q nằm trên cạnh BC,BD còn R nằm ngoài cạnh CD. Gọi hình chiếu vuông góc của D trên AC,BC,ABX,Y,Z tương ứng, ở đây X,Y nằm trên cạnh AC,BC còn Z nằm ngoài cạnh BA. Gọi trực tâm của tam giác ABDH. Chứng minh rằng dây chung của hai đường tròn ngoại tiếp các tam giác PQRXYZ chia đôi BH.

Bài 3. Cho X là tập có 100 phần tử. Tìm số nguyên dương n nhỏ nhất thỏa mãn: Với mỗi dãy n tập con của X, A_1,A_2,\ldots,A_n, tồn tại 1 \leq i < j < k \leq n sao cho A_i \subseteq A_j \subseteq A_k hoặc A_i \supseteq A_j \supseteq A_k.

Ngày thứ hai

Bài 4. Chứng minh rằng tồn tại đa thức P(x) = x^{58} + a_1x^{57} + \cdots + a_{58} sao cho nó có đúng 29 nghiệm thực dương, có đúng 29 nghiệm thực âm và \log_{2017} |a_i| là số nguyên dương với mọi 1 \leq i \leq 58. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 3”