Hanoi mathematical olympiad


Trong bài này tôi sẽ giới thiệu một số đề thi chọn HSG lớp 12 của Hà Nội. Mỗi năm có khoảng 500 học sinh tham gia kỳ thi này, khoảng 100 học sinh có điểm cao nhất sẽ tham gia kỳ thi chọn đội tuyển của Hà Nội dự thi chọn HSG QG (VMO).

Đề thi chọn đội tuyển Hà Nội các bạn có thể xem ở https://nttuan.org/2023/06/23/hanoitst/ .

Continue reading “Hanoi mathematical olympiad”

Hanoi team selection test


Trong bài này tôi sẽ giới thiệu các đề thi chọn đội tuyển của Hà Nội dự thi chọn HSG QG (VMO).

(1) Đề thi năm học 2015 – 2016

(2) Đề thi năm học 2016 – 2017

(3) Đề thi năm học 2017 – 2018

(4) Đề thi năm học 2018 – 2019

Continue reading “Hanoi team selection test”

Lucas sequences and Vietnam TST 2023/4b


Cho PQ là hai số nguyên lẻ nguyên tố cùng nhau thỏa mãn D=P^2-4Q>0. Dãy Lucas (U_n) và dãy Lucas đồng hành (V_n) với tham số PQ được xác định như sau:U_0=0,U_1=1,U_n=PU_{n-1}-QU_{n-2},\quad\forall n\geq 2,V_0=2,V_1=P,V_n=PV_{n-1}-QV_{n-2},\quad\forall n\geq 2. Khi P=1Q=-1 ta có (U_n) là dãy số Fibonacci. Vào quãng năm 1996, Paulo Ribenboim và Wayne L. McDaniel đã chứng minh được kết quả:

Định lí. Nếu n là số tự nhiên sao cho một trong bốn số U_n,2U_n,V_n2V_n là số chính phương thì n<13.

Phương pháp của họ như sau. Chẳng hạn giả sử U_n là số một chính phương, khi đó với mỗi số nguyên dương lẻ M nguyên tố cùng nhau với U_n ta có ký hiệu Jacobi (U_n\mid M)=1. Với hầu hết n, họ chọn được các modulo M_i sao cho \prod (U_n\mid M_i)=-1, suy ra U_n không phải là số chính phương, vô lý! Bạn đọc quan tâm có thể đọc trong bài:

\text{[P-W]} Paulo Ribenboim and Wayne L. McDaniel, The Square Terms in Lucas Sequences. Journal of number theory 58, 104 -123 (1996).

Mục đích chính của tôi khi viết bài này chỉ là giới thiệu \text{[P-W]} đến các đồng nghiệp và các học sinh. Trong đó có nhiều kết quả sơ cấp về dãy Lucas và dãy Lucas đồng hành, những dãy số mà chúng ta biết ít hơn so với dãy số Fibonacci. Tiếp theo tôi giới thiệu một lời giải cho bài toán sau, nó là ý b trong bài 4 của đề thi chọn đội tuyển IMO 2023.

Bài toán (TST2023/4b). Cho hai số nguyên dương lẻ a>2b nguyên tố cùng nhau. Xét dãy số (x_n)_{n\geq 0} xác định bởi x_0=2,x_1=a,x_{n+2}=ax_{n+1}+bx_n,\quad\forall n\geq 0. Chứng minh rằng không tồn tại bộ ba số nguyên dương (m,n,p) sao cho mnp chẵn và \displaystyle \frac{x_m}{x_nx_p} là số chính phương.

Lời giải. Với giả thiết của bài toán ta thấy (x_n) là dãy Lucas đồng hành với tham số P=aQ=-b, bởi vậy chúng ta có thể dùng các kết quả trong \text{[P-W]}. Giả sử (m,n,p) là một bộ ba số nguyên dương sao cho mnp chẵn và \displaystyle \frac{x_m}{x_nx_p} là số chính phương. Khi đó x_n\mid x_mx_p\mid x_m, suy ra theo (9) trong \text{[P-W]} (trang 107) ta có m/nm/p là các số nguyên dương lẻ. Do đó cấp 2-adic của m,np bằng nhau, để ý thêm mnp chẵn ta có m,np đều chẵn. Bây giờ theo bổ đề 1 trong \text{[P-W]} ta có (2\mid D)=1, điều này không thể xảy ra vì (2\mid D)=(-1)^{\frac{D^2-1}{8}}=-1.

Bài toán được giải.

Vậy tôi giải được bài toán này nhờ tôi biết nhiều, chứ không cần điều gì đặc biệt. Có đúng không các bạn học sinh? 🙂

18/04/2023: Anh Nguyễn Xuân Thọ (Đại học Bách Khoa) cho tôi biết là kết quả TST2023/4b này đã có trong Colloquium Mathematicum, Vol. 130, No. 1, 2013.

Một điểm không phù hợp nữa của bài toán này là đoạn đặc trưng các cặp (m,n) sao cho x_m\mid x_n đã có trong đề thi chọn HSG QG năm 2018, cụ thể là Bài 6.

IMO 2022: Problems and results


IMO 2022 diễn ra ở Oslo (Norway) từ 6/7 đến 16/7.

I. Danh sách đội tuyển Việt Nam

Ngô Quý Đăng (THPT chuyên KHTN, Hà Nội)

Phạm Việt Hưng (THPT chuyên KHTN, Hà Nội)

Vũ Ngọc Bình (THPT chuyên Vĩnh Phúc, Vĩnh Phúc)

Hoàng Tiến Nguyên (THPT chuyên Phan Bội Châu, Nghệ An)

Phạm Hoàng Sơn (Phổ thông Năng khiếu, ĐHQG thành phố Hồ Chí Minh)

Nguyễn Đại Dương (THPT chuyên Lam Sơn, Thanh Hóa)

Trưởng đoàn là GS. Lê Anh Vinh, Phó đoàn là PGS. Lê Bá Khánh Trình.

II. Đề thi và đáp án

Đáp án có ngay trong link trên AoPS các bạn nhé! Nhưng mà đừng bấm vào link vội, giải thử đã! 🙂

III. Kết quả

Đề năm nay dễ hơn đề các năm khác, có đến 10 thí sinh đạt 42/42 điểm. Có vẻ đề thi này đã không làm tốt chỗ phân loại cao?

HCV: \geq 34, HCB: \geq 29, HCĐ: \geq 23.

10 thí sinh cao điểm nhất! Đội tuyển Việt Nam có 42/42 sau nhiều năm. C05 chắc là đến từ Nga rồi?
Kết quả của đội tuyển Việt Nam: 2 HCV, 2 HCB, 2 HCĐ.
10 đội tuyển có tổng số điểm cao nhất! Đội tuyển Việt Nam đứng thứ 4. Năm nay các học sinh đến từ Nga không được tham gia với tư cách đội tuyển Nga, các em tham gia với tư cách cá nhân, tổng điểm của các em trong đội là 207.