Các căn bậc hai là độc lập nguyên


Bài toán. Cho a_1,\ldots,a_k là các số nguyên không đồng thời bằng 0. Chứng minh rằng nếu n_1, n_2,\ldots, n_k là các số nguyên dương đôi một khác nhau và không có ước chính phương lớn hơn 1 thì \sum a_i\sqrt{n_i}\not=0

Lời giải. Ta sẽ chứng minh bằng quy nạp theo N, số ước nguyên tố của \prod n_i, khẳng định: Tồn tại tổng S'=\sum b_i\sqrt{m_i} sao cho SS' là số nguyên khác 0, ở đây m_i là các số nguyên dương đôi một khác nhau và không có ước chính phương khác 1, tập các ước nguyên tố của \prod m_i là tập con của tập các ước nguyên tố của \prod n_i, b_i là các số nguyên, và S=\sum a_i\sqrt{n_i}. Từ đó suy ra S\not=0.

Với N=0 ta chọn S'=1.

Với N=1 ta chọn S'=\sqrt{p_1} khi S=a_1\sqrt{p_1}, chọn S'=-a_1\sqrt{p_1}+a_2 nếu S=a_1\sqrt{p_1}+a_2.

Continue reading “Các căn bậc hai là độc lập nguyên”