A proof of Cauchy–Davenport theorem


Trong bài này tôi sẽ giới thiệu một chứng minh của định lí Cauchy-Davenport.

Định lí Cauchy – Davenport. Cho số nguyên tố p và hai tập con khác rỗng A,B của \mathbb{Z}/p\mathbb{Z}. Khi đó

|A+B|\geq\min (p,|A|+|B|-1).

Chứng minh. Ta chứng minh khẳng định bằng quy nạp theo |B|. Khi |B|=1 ta có

|A+B|=|A|=\min (p,|A|)=\min (p,|A|+|B|-1). Suy ra khẳng định đúng khi |B|=1. Khi |B|=2 ta viết B=\{b_1,b_2\}A=\{a_1,a_2,\ldots,a_m\}, ta có ngay |A+B|\geq m.

Nếu |A+B|= m thì \{b_1+a_1,\ldots,b_1+a_m\}=\{b_2+a_1,\ldots,b_2+a_m\}, suy ra mb_1\equiv mb_2\pmod{p}, hay m=p. Khi đó |A+B|=p\geq\min (p,|A|+|B|-1).

Nếu |A+B|>m thì |A+B|\geq m+1\geq\min (p,m+1)=\min (p,|A|+|B|-1).

Vậy khẳng định đúng khi |B|=2. Giả sử khẳng định đúng với mỗi tập B thỏa mãn |B|<n, trong đó n\geq 3. Ta sẽ chứng minh khẳng định đúng với mọi tập B|B|=n. Xét một tập B thỏa mãn |B|=n. Đặt |A+B|=l,|A|=m và viết B=\{b_1,b_2,\ldots,b_n\}. Xét ba trường hợp

Trường hợp 1. l\geq p.

Ta có |A+B|=l\geq p\geq\min (p,|A|+|B|-1).

Trường hợp 2. m+n>p.

Ta có A+B=\{0,1,2,\ldots,p-1\}, thật vậy với mỗi g\in \{0,1,2,\ldots,p-1\}, hai tập g-AB có giao khác rỗng vì chúng là các tập con của tập \{0,1,2,\ldots,p-1\} và có tổng số phần tử lớn hơn p. Lấy h\in g-A\cap B ta có ngay g=b=g-a\,\, (a\in A,b\in B), suy ra g=a+b\in A+B. Từ đây ta có |A+B|=p\geq\min (p,|A|+|B|-1).

Trường hợp 3. l<pm+n\leq p.

Ở trường hợp này thì \min (p,|A|+|B|-1)=\min (p,m+n-1)=m+n-1. Áp dụng giả thiết quy nạp cho hai tập C=A+B\{b_1,b_n\} ta có |C+\{b_1,b_n\}|\geq\min (p,|C|+|\{b_1,b_n\}|-1)=\min (p,l+1)=l+1, suy ra C+b_1\not = C+b_n, do đó tồn tại số nguyên x sao cho x-b_1\in A+Bx-b_n\not\in A+B. Từ đây ta thấy tồn tại số nguyên dương r<n sao cho x-b_i\in A+B,\,\forall i=\overline{1,r}x-b_i\not\in A+B,\,\forall i=\overline{r+1,n}. Áp dụng giả thiết quy nạp cho hai tập AB^{\prime}=\{b_{r+1},b_{r+2},\ldots,b_n\} ta có

|A+B^{\prime}|\geq \min (p,|A|+|B^{\prime}|-1)=\min (p,m+n-r-1)=m+n-r-1. Ta có x-b_i\not\in A+B^{\prime},\,\forall i=\overline{1,r}, vì nếu chẳng hạn x-b_1\in A+B^{\prime} thì

x-b_1= a+b_{s}\Rightarrow x-b_s\in A+B, điều này trái với cách chọn r. Vậy |A+B|\geq r+|A+B^{\prime}|\geq r+m+n-r-1=m+n-1, và định lí được chứng minh. \Box

Bằng quy nạp ta chứng minh được kết quả sau.

Hệ quả. Cho số nguyên dương h>1, số nguyên tố ph tập con khác rỗng A_1, A_2,\ldots, A_h của \mathbb{Z}/p\mathbb{Z}. Khi đó \displaystyle \mid A_1+A_2+\cdots+A_h\mid \geq \min \left(p,\sum_{i=1}^h\mid A_i\mid-h+1\right).