IMO Shortlist 2024: Algebra


Trong bài này tôi sẽ giới thiệu các bài toán đại số trong cuốn IMO Shortlist 2024, các bài toán từ IMO SL năm trước các bạn có thể tìm ở https://nttuan.org/category/contests/imo-shortlist/ .

Phần hình học của bộ 2024 tôi đã đăng ở đây https://nttuan.org/2025/08/07/isl2024g/

A1. https://artofproblemsolving.com/community/c6h3358923p31205921

Tìm tất cả các số thực \alpha sao cho với mỗi số nguyên dương n, số

[\alpha]+[2\alpha]+\cdots+[n\alpha]

chia hết cho n. (IMO2024/1)

A2. https://artofproblemsolving.com/community/c6h3610446p35340919

Cho n là một số nguyên dương. Tìm giá trị nhỏ nhất có thể của

S = 2^0 x_0^2 + 2^1 x_1^2 + \dots + 2^n x_n^2,

trong đó x_0, x_1, \dots, x_n là các số nguyên không âm sao cho x_0 + x_1 + \dots + x_n = n.

A3. https://artofproblemsolving.com/community/c6h3610463p35340954

Hãy xác định xem với mọi dãy số thực dương (a_n),

\displaystyle\frac{3^{a_1}+3^{a_2}+\cdots+3^{a_n}}{(2^{a_1}+2^{a_2}+\cdots+2^{a_n})^2} < \frac{1}{2024}

có đúng với ít nhất một số nguyên dương n hay không.

A4. https://artofproblemsolving.com/community/c6h3610435p35340902

Tìm tất cả các tập con \mathcal{S} của \{2^{0},2^{1},2^{2},\ldots\} sao cho tồn tại một hàm f\colon\mathbb{Z}_{>0}\to\mathbb{Z}_{>0} với

          \mathcal{S}=\{f(a+b)-f(a)-f(b)\mid a,b\in\mathbb{Z}_{>0}\}.

A5. https://artofproblemsolving.com/community/c6h3610458p35340939

Tìm tất cả các dãy số tuần hoàn a_1,a_2,\dots gồm các số thực sao cho với mỗi số nguyên dương n,

a_{n+2}+a_{n}^2=a_n+a_{n+1}^2

|a_{n+1}-a_n|\leqslant 1.

A6. https://artofproblemsolving.com/community/c6h3610454p35340929

Cho a_0, a_1, a_2, \ldots là một dãy tăng ngặt các số nguyên dương sao cho với mỗi n \ge 1, ta có  

\displaystyle a_n \in \left\{ \frac{a_{n-1} + a_{n+1}}{2}, \sqrt{a_{n-1} \cdot a_{n+1}} \right\}.

Cho b_1, b_2, \ldots là một dãy vô hạn các chữ cái được xác định bởi    

b_n = A nếu a_n = \frac{1}{2}(a_{n-1} + a_{n+1}), =G trong trường hợp còn lại. Chứng minh rằng tồn tại các số nguyên dương n_0d sao cho với mọi n \ge n_0 ta có b_{n+d} = b_n.

A7. https://artofproblemsolving.com/community/c6h3359771p31218720

Một hàm số f:\mathbb{Q}\to\mathbb{Q} được gọi là đẹp nếu với mỗi số hữu tỷ xy, f(x+f(y))=f(x)+y hoặc f(f(x)+y)=x+f(y). Chứng minh rằng tồn tại số nguyên c sao cho với mọi hàm số đẹp f, có không quá c số hữu tỷ có dạng f(r)+f(-r), với số hữu tỷ r nào đó. Tìm giá trị nhỏ nhất của các số c có tính chất này. (IMO2024/6)

A8. https://artofproblemsolving.com/community/c6h3610460p35340944

Cho p \ne q là các số nguyên dương nguyên tố cùng nhau. Xác định tất cả các dãy vô hạn a_1, a_2, \dots các số nguyên dương sao cho với mỗi số nguyên dương n,

\max(a_n, a_{n+1}, \dots, a_{n+p}) - \min(a_n, a_{n+1}, \dots, a_{n+p}) = p

\max(a_n, a_{n+1}, \dots, a_{n+q}) - \min(a_n, a_{n+1}, \dots, a_{n+q}) = q.

IMO Shortlist 2022: Number theory


N1. Một số nguyên dương được gọi là số Na Uy nếu nó có ba ước dương phân biệt có tổng bằng 2022. Xác định số Na Uy nhỏ nhất.

N2. Tìm tất cả các số nguyên dương n>2 sao cho

\displaystyle n! \mid \prod_{ p<q\le n,\quad p,q\in\mathbb{P}} (p+q).

N3. Cho a > 1 là một số nguyên dương và d > 1 là một số nguyên dương nguyên tố cùng nhau với a. Đặt x_1=1 và với k\geq 1, x_{k+1} = x_k + d nếu không chia hết x_k, =x_k/a nếu a chia hết x_k. Tìm, theo ad, số nguyên dương n lớn nhất mà tồn tại chỉ số k sao cho x_k chia hết cho a^n.

N4. Tìm tất cả các bộ ba số nguyên dương (a,b,p) sao cho p là số nguyên tố và a^p=b!+p.

(IMO2022/5)

N5. Đối với mỗi i\in [9]T\in\mathbb{N}^*, ký hiệu d_i(T) là số lần chữ số i xuất hiện khi tất cả các bội của 1829 trong [T] được viết ra theo cơ số 10. Chứng minh rằng có vô số T\in\mathbb{N}^* sao cho có đúng hai giá trị phân biệt trong các số d_1(T), d_2(T), \dots, d_9(T).

N6. Cho Q là một tập hợp không nhất thiết hữu hạn các số nguyên tố. Đối với một số nguyên dương n, xét phân tích ra thừa số nguyên tố của nó: gọi p(n) là tổng của tất cả các số mũ và q(n) là tổng của các số mũ tương ứng với các số nguyên tố trong Q. Số nguyên dương n được gọi là đặc biệt nếu p(n)+p(n+1)q(n)+q(n+1) đều là số nguyên chẵn. Chứng minh rằng tồn tại một hằng số c>0 không phụ thuộc Q sao cho với mọi số nguyên dương N>100, số các số nguyên đặc biệt trong [N] ít nhất là cN.

N7. Gọi k là một số nguyên dương và S là một tập hữu hạn các số nguyên tố lẻ. Chứng minh rằng có nhiều nhất một cách (sai khác phép quay và đối xứng) để đặt các phần tử của S xung quanh một đường tròn sao cho tích của hai số cạnh nhau bất kỳ có dạng x^2+x+k với một số nguyên dương x.

(IMO2022/3)

N8. Chứng minh rằng với mỗi số nguyên dương n, số 5^n-3^n không chia hết cho số 2^n+65.

Các phần khác đã được đăng ở

Đại số: https://nttuan.org/2024/05/06/isl2022-algebra/

Hình học: https://nttuan.org/2023/09/08/isl2022-geometry/

Tổ hợp: https://nttuan.org/2023/09/29/isl2022-combinatorics/

Bản pdf của IMO SL từ 2014 đến 2021: https://nttuan.org/2023/07/02/isl/

Sau khi sửa một vài chỗ, bản pdf của IMO SL 2022 sẽ được đăng trong link trên.

IMO Shortlist 2022: Algebra


Trong bài này tôi sẽ dịch phần Đại số trong cuốn IMO Shortlist 2022. Các năm trước bạn có thể tìm ở đường dẫn https://nttuan.org/2023/07/02/isl/.

Các phần khác trong cuốn IMO Shortlist 2022 tôi đã để ở các bài dưới đây:

Hình học https://nttuan.org/2023/09/08/isl2022-geometry/

Tổ hợp https://nttuan.org/2023/09/29/isl2022-combinatorics/


A1. Cho (a_n)_{n\geq 1} là một dãy số thực dương có tính chất (a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2} với mọi số nguyên dương n. Chứng minh rằng a_{2022}\leq 1.

A2. Cho một số nguyên k\ge2. Tìm số nguyên n \ge k+1 nhỏ nhất sao cho tồn tại một tập n số thực có tính chất: mỗi phần tử của nó có thể viết được dưới dạng tổng của k phần tử phân biệt khác của tập hợp.

A3. Gọi \mathbb{R}^+ là tập hợp các số thực dương. Tìm tất cả các hàm f: \mathbb{R}^+ \to \mathbb{R}^+ sao cho với mỗi x \in \mathbb{R}^+, có đúng một y \in \mathbb {R}^+ thỏa mãn xf(y)+yf(x) \leq 2. (IMO2022/2)

A4. Gọi n \geqslant 3 là một số nguyên và x_1,x_2,\ldots,x_n là các số thực trong đoạn [0,1]. Đặt s=x_1+x_2+\ldots+x_n và giả sử rằng s \geqslant 3. Chứng minh rằng tồn tại các số nguyên ij với 1 \leqslant i<j \leqslant n sao cho 2^{j-i}x_ix_j>2^{s-3}.

A5. Tìm tất cả các số nguyên dương n \geqslant 2 sao cho tồn tại n số thực a_1<\cdots<a_n và số thực r>0 để \frac{1}{2}n( n-1) hiệu a_j-a_i với 1 \leqslant i<j \leqslant n bằng, theo một thứ tự nào đấy, các số r^1,r^2,\ldots,r^{\frac{ 1}{2}n(n-1)}.

A6. Chúng ta nói rằng một hàm f\colon\mathbb R\to\mathbb R là tốt nếu f(x + f(y)) = f(x) + f(y) với mọi x,y\in\mathbb R. Tìm tất cả các số hữu tỉ q sao cho với mọi hàm tốt f, tồn tại một số thực z sao cho f(z) = qz.

A7. Với số nguyên dương m, ký hiệu s(m) là tổng các chữ số của m trong hệ thập phân. Gọi P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 là một đa thức, trong đó n \geqslant 2a_i là một số nguyên dương với mọi 0 \leqslant i \leqslant n-1. Có thể xảy ra với mỗi số nguyên dương k, s(k)s(P(k)) có cùng tính chẵn – lẻ?

A8. Với số nguyên dương n, một n-dãy là một dãy (a_0,\ldots,a_n) gồm các số nguyên không âm có tính chất: nếu ij là các số nguyên không âm với i+j \leqslant n, thì a_i+a_j \leqslant na_{a_i+a_j}=a_{i+j}. Gọi f(n) là số n-dãy. Chứng minh rằng tồn tại các số thực dương c_1, c_2\lambda sao cho c_1\lambda^n<f(n)<c_2\lambda^n với mọi số nguyên dương n.

Subconvex sequences


Trong bài này tôi sẽ giới thiệu một lớp dãy hay gặp trong các đề thi chọn học sinh giỏi các cấp. Chứng minh định lí chính trong bài là của Adrian Sandovichi. Để theo dõi cho dễ, các em học sinh nên đọc lại bài sau:

https://nttuan.org/2023/09/15/limit-of-a-sequence/

Định nghĩa. Cho dãy số thực không âm (x_n)_{n\geq 1} và số nguyên k>0. Dãy số (x_n)_{n\geq 1} được gọi là một dãy lồi dưới cấp k nếu có các số thực \alpha_1, \alpha_2,\ldots, \alpha_k sao cho hai điều kiện sau được thỏa mãn đồng thời:

(1) \alpha_i\in (0;1),\quad \forall i=\overline{1,k}\alpha_1+\alpha_2+\cdots+\alpha_k\leq 1.

(2) x_{n+k}\leq \alpha_1x_{n+k-1}+\alpha_2x_{n+k-2}+\cdots+\alpha_kx_n,\quad \forall n\geq 1.

Mọi dãy lồi dưới cấp 1 đều có giới hạn bằng 0. Trong định nghĩa trên, nếu dãy số (x_n) có giới hạn hữu hạn và \sum\alpha_i<1 thì \lim x_n=0.

Định lí. Cho số nguyên dương k. Khi đó mọi dãy lồi dưới cấp k đều có giới hạn hữu hạn.

Chứng minh. Gọi (x_n) là một dãy lồi dưới cấp k. Khi đó tồn tại các số thực \alpha_1, \alpha_2,\ldots, \alpha_k sao cho hai điều kiện sau được thỏa mãn đồng thời:

(1) \alpha_i\in (0;1),\quad \forall i=\overline{1,k}\alpha_1+\alpha_2+\cdots+\alpha_k\leq 1.

(2) x_{n+k}\leq \alpha_1x_{n+k-1}+\alpha_2x_{n+k-2}+\cdots+\alpha_kx_n,\quad \forall n\geq 1.

Xét dãy số (y_n)_{n\geq 1} xác định bởi \displaystyle y_n=\max_{0\leq i\leq k-1}x_{n+i} với mọi số nguyên n>0. Ta thấy (y_n)_{n\geq 1} là một dãy số không tăng và bị chặn dưới bởi 0 nên nó có giới hạn hữu hạn không âm, đặt L=\lim y_n. Ta sẽ chứng minh (x_n) có giới hạn hữu hạn và L=\lim x_n.

Với mọi số thực dương \epsilon, cố định nó.

Đặt \displaystyle t=\min\left\{1;\frac{\alpha_1^k}{2^k(1-\alpha_1)}\right\}.t>0L là giới hạn của dãy số không tăng (y_n) nên tồn tại số nguyên dương n_{\epsilon} để

x_n\leq y_n<L+t\epsilon\leq L+\epsilon,\quad \forall n\geq n_{\epsilon}.\quad (*)

Bây giờ ta chứng minh x_m>L-\epsilon,\quad \forall m\geq k+n_{\epsilon}.\quad (**)

Giả sử tồn tại số nguyên dương m\geq k+n_{\epsilon} sao cho x_m\leq L-\epsilon.

Mệnh đề. \displaystyle x_{m+p}\leq L-\epsilon\left(\frac{\alpha_1}{2}\right)^p,\quad \forall p=\overline{1,k-1}.

Chứng minh. Ta chứng minh bằng quy nạp theo p. Với p=1, từ (*) và cách chọn t ta có

x_{m+1} \leq \alpha_1x_m+\alpha_2x_{m-1}+\cdots+\alpha_kx_{m-k+1}

\leq\alpha_1x_m+(\alpha_2+\cdots+\alpha_k)(L+t\epsilon)

\leq\alpha_1(L-\epsilon)+(1-\alpha_1)(L+t\epsilon)

\leq L-a_1\epsilon+\left(\frac{\alpha_1}{2}\right)^k\epsilon

\leq L-a_1\epsilon+\left(\frac{\alpha_1}{2}\right)^1\epsilon

=L-\epsilon\left(\frac{\alpha_1}{2}\right).

Suy ra khẳng định đúng với p=1. Giả sử khẳng định đúng đến p<k-1, ta chứng minh nó đúng với p+1. Theo giả thiết quy nạp, (*) và cách chọn t ta có

x_{m+p+1} \leq \alpha_1x_{m+p}+\alpha_2x_{m+p-1}+\cdots+\alpha_kx_{m+p-k+1}

\leq\alpha_1\left(L-\epsilon\left(\frac{\alpha_1}{2}\right)^p\right)+(1-\alpha_1)(L+t\epsilon)

=L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p+(1-\alpha_1)t\epsilon

\leq L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p+\left(\frac{\alpha_1}{2}\right)^k\epsilon

\leq L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p +\left(\frac{\alpha_1}{2}\right)^{p+1}\epsilon

=L-\epsilon\left(\frac{\alpha_1}{2}\right)^{p+1}.

Suy ra khẳng định đúng với p+1. Theo nguyên lý quy nạp toán học, mệnh đề là đúng. \Box

Continue reading “Subconvex sequences”