IMO Shortlist 2022: Algebra


Trong bài này tôi sẽ dịch phần Đại số trong cuốn IMO Shortlist 2022. Các năm trước bạn có thể tìm ở đường dẫn https://nttuan.org/2023/07/02/isl/.

Các phần khác trong cuốn IMO Shortlist 2022 tôi đã để ở các bài dưới đây:

Hình học https://nttuan.org/2023/09/08/isl2022-geometry/

Tổ hợp https://nttuan.org/2023/09/29/isl2022-combinatorics/


A1. Cho (a_n)_{n\geq 1} là một dãy số thực dương có tính chất (a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2} với mọi số nguyên dương n. Chứng minh rằng a_{2022}\leq 1.

A2. Cho một số nguyên k\ge2. Tìm số nguyên n \ge k+1 nhỏ nhất sao cho tồn tại một tập n số thực có tính chất: mỗi phần tử của nó có thể viết được dưới dạng tổng của k phần tử phân biệt khác của tập hợp.

A3. Gọi \mathbb{R}^+ là tập hợp các số thực dương. Tìm tất cả các hàm f: \mathbb{R}^+ \to \mathbb{R}^+ sao cho với mỗi x \in \mathbb{R}^+, có đúng một y \in \mathbb {R}^+ thỏa mãn xf(y)+yf(x) \leq 2. (IMO2022/2)

A4. Gọi n \geqslant 3 là một số nguyên và x_1,x_2,\ldots,x_n là các số thực trong đoạn [0,1]. Đặt s=x_1+x_2+\ldots+x_n và giả sử rằng s \geqslant 3. Chứng minh rằng tồn tại các số nguyên ij với 1 \leqslant i<j \leqslant n sao cho 2^{j-i}x_ix_j>2^{s-3}.

A5. Tìm tất cả các số nguyên dương n \geqslant 2 sao cho tồn tại n số thực a_1<\cdots<a_n và số thực r>0 để \frac{1}{2}n( n-1) hiệu a_j-a_i với 1 \leqslant i<j \leqslant n bằng, theo một thứ tự nào đấy, các số r^1,r^2,\ldots,r^{\frac{ 1}{2}n(n-1)}.

A6. Chúng ta nói rằng một hàm f\colon\mathbb R\to\mathbb R là tốt nếu f(x + f(y)) = f(x) + f(y) với mọi x,y\in\mathbb R. Tìm tất cả các số hữu tỉ q sao cho với mọi hàm tốt f, tồn tại một số thực z sao cho f(z) = qz.

A7. Với số nguyên dương m, ký hiệu s(m) là tổng các chữ số của m trong hệ thập phân. Gọi P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 là một đa thức, trong đó n \geqslant 2a_i là một số nguyên dương với mọi 0 \leqslant i \leqslant n-1. Có thể xảy ra với mỗi số nguyên dương k, s(k)s(P(k)) có cùng tính chẵn – lẻ?

A8. Với số nguyên dương n, một n-dãy là một dãy (a_0,\ldots,a_n) gồm các số nguyên không âm có tính chất: nếu ij là các số nguyên không âm với i+j \leqslant n, thì a_i+a_j \leqslant na_{a_i+a_j}=a_{i+j}. Gọi f(n) là số n-dãy. Chứng minh rằng tồn tại các số thực dương c_1, c_2\lambda sao cho c_1\lambda^n<f(n)<c_2\lambda^n với mọi số nguyên dương n.

One thought on “IMO Shortlist 2022: Algebra

Leave a comment