The number of prime factors of a natural number


Mỗi năm, khi được mời dạy cho đội tuyển Việt Nam tham dự Olympic Toán quốc tế (IMO), tôi thường mang đến cho các em vài bài toán rất khó, và hy vọng một lời giải thanh nhã từ các thành viên của đội tuyển. Dưới đây là một bài cho đội tuyển IMO năm 2021.

Bài toán. Với mỗi số nguyên dương n, gọi \omega (n) là số ước nguyên tố của n. Chứng minh rằng tồn tại số nguyên dương n sao cho \omega (n+1)<\omega (n+2)<\ldots <\omega (n+100).

Lời giải. Với hai hàm f(x)g(x) từ tập các số nguyên dương đến tập các số thực dương ta viết f=o(g) nếu f/g\to 0 khi x\to\infty. Thay 100 bởi k > 2. Gọi A là một số nguyên dương phụ thuộc k mà ta sẽ chọn sau. Giả sử  q_1<q_2<\cdots<q_m<\cdots là dãy tất cả các số nguyên tố lớn hơn k. Với j=1, \ldots, k, đặt T_j= j(j-1) / 2\displaystyle M_j=\prod_{\ell=T_j A+1}^{T_{j+1} A} q_{\ell}. Đặt \displaystyle M=\prod_{j=1}^k M_j và gọi N là số nguyên dương nhỏ nhất sao cho M_j chia hết N+j với mỗi j\in [k]. Ta có ngay N+k<M. Thật vậy, nếu không thì N=M-i với i \in [k], lấy j \in [k]\setminus \{i\}, ta có M_j \mid N+j=M+(j-i); suy ra M_j \mid j-i, vô lý.

Xét số n=M \lambda+N, ở đây \lambda là số nguyên dương mà \lambda \in[M, 2 M]. Ta có

\displaystyle n+j=M \lambda+(N+j)=M_j\left(\left(M / M_j\right) \lambda+(N+j) / M_j\right), \quad j=1, \ldots, k .

Khi đặt A_j=(N+j) / M_jB_j=M / M_j, ta có

\displaystyle j A=T_{j+1} A-T_j A=\omega\left(M_j\right) \leq \omega(n+j) \leq j A+\omega\left(B_j \lambda+A_j\right),

suy ra nếu \lambda thỏa mãn \displaystyle \omega\left(B_j \lambda+A_j\right)<A, \quad \forall j=1, \ldots, k-1,\quad (1) thì

\displaystyle jA \leq\omega(n+j)<j A+A \leq \omega(n+j+1), \quad\forall  j=1, \ldots, k-1,

và bài toán được giải. Vậy sẽ là đủ nếu ta chỉ ra có A để tồn tại \lambda thỏa mãn (1).

Với mỗi j<k, ta có (A_j,B_j)=1. Thật vậy, xét một chỉ số j<k. Ta có

\displaystyle B_j=M / M_j=\prod_{\substack{1 \leq \ell \leq k \\ \ell \neq j}} M_{\ell}.

Nếu có số nguyên tố p \mid\left(A_j, B_j\right), tồn tại chỉ số \ell \neq j sao cho p \mid M_{\ell}. Vì M_{\ell} \mid N+\ell nên p \mid N+\ell. Nhưng p\left|A_j\right| N+j; suy ra p \mid(N+\ell)-(N+j)=(\ell-j), và 1 \leq|\ell-j|<k. Do đó p<k, điều này không thể xảy ra do mọi ước nguyên tố của M lớn hơn k.

Bổ đề. Với mỗi số nguyên dương x, ký hiệu \tau (x) là số ước dương của x. Khi đó

\displaystyle \sum_{\lambda \in[M, 2 M]} \tau\left(B_j \lambda+A_j\right)\leq 4 M(\ln M+1),\quad\forall j<k.

Chứng minh. Xét một chỉ số j<k. Vì N+k <M nên với mỗi số nguyên \lambda\in [M,2M], ta có

\displaystyle B_j \lambda+A_j \leq \frac{1}{M_j}(M \lambda+N+k)<\frac{2 M \lambda}{M_j} \leq \frac{4 M^2}{M_j}<M^2,

suy ra

\displaystyle \tau\left(B_j \lambda+A_j\right) \leq 2 \sum_{\substack{d \mid B_j \lambda+A_j \\ d \leq M}} 1.

Do đó

\displaystyle \sum_{\lambda \in[M, 2 M]} \tau\left(B_j \lambda+A_j\right)

\displaystyle \leq 2 \sum_{\lambda \in[M, 2 M]} \sum_{\substack{d \mid B_j \lambda+A_j \\ d \leq M}} 1 = 2 \sum_{d \leq M} \sum_{\substack{\lambda \in[M, 2 M] \\ B_j \lambda+A_j \equiv 0 \\ (\bmod d)}} 1

\leq 2 \sum_{d \leq M}\left(\left\lfloor\left.\frac{M}{d} \right\rvert\,+1\right) \leq 4 M \sum_{d \leq M} \frac{1}{d}\right. \leq 4 M(\ln M+1) . \Box

Continue reading “The number of prime factors of a natural number”

The fundamental theorem of arithmetic


Trong bài này chúng ta sẽ nói một ít về số nguyên tố, trình bày chứng minh định lí cơ bản của số học, và giới thiệu một số kết quả sơ cấp về số nguyên tố. Đây cũng là bài đọc cho các học sinh lớp 9 và các học sinh ôn thi chọn HSG QG tại T’s Lab. Để theo dõi cho dễ dàng bạn đọc nên xem lại bài viết sau:

[1] https://nttuan.org/2023/07/14/divisibility/


Một số nguyên tố là một số nguyên n lớn hơn 1 có đúng hai ước dương là 1n. Một số nguyên lớn hơn 1 được gọi là hợp số nếu nó không phải là số nguyên tố. Các số 2,3,5 là các số nguyên tố. Các số 4,15,18 là các hợp số.

Định lí 1. Mỗi số nguyên lớn hơn 1 có thể biểu diễn như là tích của các số nguyên tố.
Chứng minh. Giả sử n là một số nguyên lớn hơn 1. Nếu n là số nguyên tố thì nó là tích với một thừa số nguyên tố. Nếu không thì n=n_1 n_2, trong đó n_1n_2 là các số nguyên lớn hơn 1 và bé hơn n. Nếu n_1 là một số nguyên tố, ta không làm gì; nếu không thì viết n_1 thành tích của hai số nguyên lớn hơn 1 và bé hơn n_1; thao tác tương tự với n_2. Tiếp tục thao tác như thế trên các thừa số mới. Quá trình này phải dừng vì không có dãy giảm nghiêm ngặt gồm vô hạn số nguyên dương, khi đó ta có một cách biểu diễn n như là tích của các số nguyên tố. \Box

Từ dịnh lí trên, vì các thừa số nguyên tố không nhất thiết phải phân biệt nên mọi số nguyên n lớn hơn 1 có thể viết được dưới dạng n=p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r},
trong đó p_1, p_2, \cdots, p_r là các số nguyên tố phân biệt và \alpha_1, \alpha_2, \cdots, \alpha_r là các số nguyên dương. Biểu diễn này được gọi là phân tích chính tắc của n thành các lũy thừa nguyên tố. Ta sẽ chứng minh rằng biểu diễn này là duy nhất theo nghĩa: đối với mỗi n, bất kỳ biểu diễn nào khác chỉ là sự sắp xếp lại các thừa số.

Continue reading “The fundamental theorem of arithmetic”

The sum of the reciprocals of the primes


Với mỗi số nguyên dương n, ký hiệu p_n là số nguyên tố thứ n trong dãy tăng tất cả các số nguyên tố. Như vậy p_1=2, p_2=3, p_3=5,…

Trong bài này chúng tôi sẽ giới thiệu một chứng minh của kết quả sau:

Định lý. Chuỗi \displaystyle \frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}+\ldots là một chuỗi phân kỳ.

Chứng minh. Giả sử ngược lại, khi đó với mỗi số nguyên dương k, chuỗi \displaystyle\sum_{m=k}^{+\infty}\frac{1}{p_m} là một chuỗi hội tụ, gọi S_k là tổng của nó. Vì \lim S_k=0 nên tồn tại số nguyên k sao cho \displaystyle S_{k+1}<\frac{1}{2}. Đặt Q=p_1p_2\ldots p_k và xét các số 1+nQ\, (n=1,2,\ldots). Mỗi số trong dãy này đều không có ước nguyên tố thuộc \{p_1, p_2, \ldots, p_k\}, do đó với mỗi số nguyên dương r, tồn tại số nguyên dương K đủ lớn để

\displaystyle\sum_{n=1}^r\frac{1}{1+nQ}\leq\sum_{t=1}^{K}S_{k+1}^t<1.

Điều này không thể xảy ra do chuỗi \displaystyle \sum_{n=1}^{+\infty}\frac{1}{1+nQ} là một chuỗi phân kỳ. \Box

Tham khảo

[1] https://nttuan.org/2018/12/30/series/

[2] https://en.wikipedia.org/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes