IMO Shortlist 2022: Geometry


Trong bài này tôi sẽ dịch phần Hình học trong cuốn IMO Shortlist 2022. Các năm trước bạn có thể tìm ở đường dẫn https://nttuan.org/2023/07/02/isl/

G1.  Cho ngũ giác lồi ABCDE với BC=DE. Giả sử có một điểm T nằm trong ABCDE sao cho TB=TD, TC=TE,\angle ABT = \angle TEA. Đường thẳng AB cắt các đường thẳng CDCT lần lượt tại PQ. Giả sử P, B, A,Q thẳng hàng theo thứ tự đó. Đường thẳng AE cắt các đường thẳng CDDT lần lượt tại RS. Giả sử R, E, A,S thẳng hàng theo thứ tự đó. Chứng minh rằng các điểm P, S, Q,  và R cùng nằm trên một đường tròn.

G2. Trong tam giác nhọn ABC, điểm F là chân đường cao kẻ từ A, P là một điểm trên đoạn AF. Các đường thẳng qua P song song với ACAB lần lượt cắt BC tại DE. Các điểm X \ne AY \ne A lần lượt nằm trên (ABD)(ACE) sao cho DA = DXEA = EY. Chứng minh rằng các điểm B, C, X,Y cùng nằm trên một đường tròn.

G3. Cho ABCD là một tứ giác nội tiếp. Giả sử các điểm Q, A, B, và P thẳng hàng theo thứ tự này sao cho đường thẳng AC là tiếp tuyến của (ADQ), và đường thẳng BD là tiếp tuyến của (BCP). Gọi MN lần lượt là trung điểm của các đoạn thẳng BCAD. Chứng minh ba đường thẳng sau đồng quy: đường thẳng CD, tiếp tuyến của (ANQ) tại A, và tiếp tuyến của (BMP) tại B.

G4. Cho ABC là một tam giác nhọn có AC > AB, gọi O là tâm đường tròn ngoại tiếp của nó và D là một điểm trên đoạn BC. Đường thẳng qua D vuông góc với BC lần lượt cắt các đường thẳng AO, AC,AB tại W, X,Y. Các đường tròn ngoại tiếp của các tam giác AXYABC cắt lại nhau tại Z \ne A. Chứng minh rằng nếu W \ne DOW = OD, thì DZ là tiếp tuyến của (AXY).

G5. Cho ABC là một tam giác và \ell_1,\ell_2 là hai đường thẳng song song. Giả sử với mỗi i, \ell_i lần lượt cắt các đường thẳng BC, CA, AB tại X_i,Y_i,Z_i. Với mỗi i, gọi \Delta_i là tam giác được tạo bởi đường thẳng đi qua X_i và vuông góc với BC, đường thẳng đi qua Y_i và vuông góc với CA, và đường thẳng đi qua Z_i và vuông góc với AB. Chứng minh rằng các đường tròn ngoại tiếp các tam giác \Delta_1\Delta_2 tiếp xúc với nhau.

G6. Cho ABC là một tam giác nhọn có đường cao {AH}P là một điểm thay đổi sao cho các đường phân giác k\ell lần lượt của \angle PBC\angle PCB gặp nhau trên {AH}. Cho k gặp {AC} tại E, \ell gặp {AB} tại F{EF} gặp {AH} tại Q. Chứng minh rằng khi P thay đổi, đường thẳng PQ luôn đi qua một điểm cố định.

G7. Hai tam giác ABC, A^{\prime}B^{\prime}C^{\prime} có cùng trực tâm H và cùng đường tròn ngoại tiếp có tâm O. Gọi PQR là tam giác tạo bởi AA^{\prime}, BB^{\prime}CC^{\prime}, chứng minh rằng tâm đường tròn ngoại tiếp của tam giác PQR nằm trên OH.

G8. Cho AA^{\prime}BCC^{\prime}B^{\prime} là một lục giác lồi nội tiếp sao cho AC là tiếp tuyến của đường tròn nội tiếp tam giác A^{\prime}B^{\prime}C^{\prime}A^{\prime}C^{\prime} là tiếp tuyến của đường tròn nội tiếp tam giác ABC. Cho các đường thẳng ABA^{\prime}B^{\prime} cắt nhau tại X, các đường thẳng BCB^{\prime}C^{\prime} cắt nhau tại Y. Chứng minh rằng nếu XBYB^{\prime} là một tứ giác lồi thì nó có đường tròn nội tiếp.

Square roots are linearly independent


Trong bài này tôi giới thiệu nhiều lời giải cho bài toán quan trọng sau:

Bài toán. Cho a_1,\ldots,a_k là các số nguyên không đồng thời bằng 0. Chứng minh rằng nếu n_1, n_2,\ldots, n_k là các số nguyên dương đôi một khác nhau và không có ước chính phương lớn hơn 1 thì \sum a_i\sqrt{n_i}\not=0

Lời giải 1. Ta sẽ chứng minh bằng quy nạp theo N, số ước nguyên tố của \prod n_i, khẳng định: Tồn tại tổng S'=\sum b_i\sqrt{m_i} sao cho SS' là số nguyên khác 0, ở đây m_i là các số nguyên dương đôi một khác nhau và không có ước chính phương khác 1, tập các ước nguyên tố của \prod m_i là tập con của tập các ước nguyên tố của \prod n_i, b_i là các số nguyên, và S=\sum a_i\sqrt{n_i}. Từ đó suy ra S\not=0.

Với N=0 ta chọn S'=1.

Với N=1 ta chọn S'=\sqrt{p_1} khi S=a_1\sqrt{p_1}, chọn S'=-a_1\sqrt{p_1}+a_2 nếu S=a_1\sqrt{p_1}+a_2.

Continue reading “Square roots are linearly independent”

A proof of Pick’s theorem


Hình tạo bởi một đường gấp khúc đóng và không tự cắt được gọi là đa giác đơn. Một tam giác cơ bản là một tam giác trong mặt phẳng tọa độ có các đỉnh là các điểm nguyên đồng thời trên biên và phần trong của nó không còn điểm nguyên nào khác. Định lí Pick cho một cách đơn giản tính diện tích đa giác đơn có các đỉnh nguyên.

Trong chứng minh định lí Pick ta cần dùng công thức tích diện tích của tam giác trong mặt phẳng tọa độ.

Định lí 1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. Khi đó diện tích của tam giác ABC bằng \displaystyle \frac{1}{2}\left|(x_B-x_A)(y_C-y_A)-(y_B-y_A)(x_C-x_A)\right|. Nói riêng, với mỗi hai điểm MN ta có diện tích của tam giác OMN bằng \dfrac{1}{2}\mid x_My_N-y_Mx_N\mid.

Định lí 2. Mọi tam giác cơ bản đều có diện tích bằng \dfrac{1}{2}.

Chứng minh. Giả sử TAB là một tam giác cơ bản bất kỳ. Không mất tính tổng quát, xem T trùng với gốc tọa độ O. Ta cần chứng minh \mid x_1y_2-x_2y_1\mid =1, với (x_1;y_1)(x_2;y_2) lần lượt là tọa độ của AB.

Gọi K là điểm sao cho OAKB là hình bình hành. Giả sử M là một điểm nguyên nằm trong hoặc trên biên hình bình hành sao cho M khác các đỉnh. Khi đó M thuộc tam giác ABK và điểm N đối xứng với M qua tâm hình bình hành là điểm nguyên thuộc tam giác OAB nhưng khác các đỉnh, không thể xảy ra điều này do OAB là một tam giác cơ bản. Như vậy hình bình hành OAKB không chứa điểm nguyên nào khác bốn đỉnh của nó.

Giả sử P là một điểm nguyên bất kỳ. Vì \overrightarrow{OA}\overrightarrow{OB} là hai vector không cùng phương nên tồn tại cặp số thực (\alpha,\beta) để \overrightarrow{OP}=\alpha \overrightarrow{OA}+\beta \overrightarrow{OB}. Gọi P' là điểm xác định bởi \overrightarrow{OP'}=\{\alpha\} \overrightarrow{OA}+\{\beta\} \overrightarrow{OB}.\{\alpha\}\{\beta\} thuộc [0;1) nên P' thuộc hình bình hành OAKB, nhưng P' lại là một điểm nguyên, suy ra P' phải là một trong bốn đỉnh của hình bình hành. Dễ thấy P'\equiv O và do đó \alpha\beta là hai số nguyên.

Gọi \overrightarrow{i}\overrightarrow{j} lần lượt là các vector đơn vị đặt trên OxOy. Khi đó theo lập luận trên, tồn tại các cặp số nguyên (u,v)(u',v') để \overrightarrow{i}=u \overrightarrow{OA}+v \overrightarrow{OB}\overrightarrow{j}=u' \overrightarrow{OA}+v' \overrightarrow{OB}. Từ hai đẳng thức này ta có \begin{cases} 1=ux_1+vx_2\\ 0=uy_1+vy_2\end{cases}\begin{cases}0=u'x_1+v'x_2\\ 1=u'y_1+v'y_2,\end{cases} suy ra \displaystyle u=\frac{y_2}{D},v=-\frac{y_1}{D},u'=-\frac{x_2}{D}\displaystyle v'=\frac{x_1}{D}, trong đó D=x_1y_2-x_2y_1\not =0 do O,AB không thẳng hàng. Vì u, v, u'v' là các số nguyên nên x_1,x_2,y_1y_2 đều là bội của D, do đó D^2\mid D và bởi thế, D=\pm 1.

Định lí Pick. Cho P là một đa giác đơn có các đỉnh là các điểm nguyên, I là số điểm nguyên nằm trong và B là số điểm nguyên nằm trên biên của P. Khi đó ta có đẳng thức \displaystyle S_P=I+\frac{1}{2}B-1.

Chứng minh. Chia P thành N tam giác cơ bản. Gọi S là tổng các góc trong của tất cả các tam giác cơ bản đó. Ta sẽ tính S theo hai cách. Vì số tam giác là N nên S=N\pi.

Tổng tất cả các góc có đỉnh là một điểm nguyên nằm trong P bằng 2\pi, tổng tất cả các góc có đỉnh là một điểm nguyên nằm trên biên của P nhưng không phải đỉnh của P bằng \pi và tổng của tất cả các góc có đỉnh là đỉnh của P bằng (n-2)\pi, ở đây n là số đỉnh của P. Do đó S=2\pi I+\pi B-2\pi, suy ra N\pi=2\pi I+\pi B-2\pi\Rightarrow N=2I+B-2. Để ý thêm S_P=\dfrac{1}{2}N, ta có điều phải chứng minh.

Subconvex sequences


Trong bài này tôi sẽ giới thiệu một lớp dãy hay gặp trong các đề thi chọn học sinh giỏi các cấp. Chứng minh định lí chính trong bài là của Adrian Sandovichi. Để theo dõi cho dễ, các em học sinh nên đọc lại bài sau:

https://nttuan.org/2023/09/15/limit-of-a-sequence/

Định nghĩa. Cho dãy số thực không âm (x_n)_{n\geq 1} và số nguyên k>0. Dãy số (x_n)_{n\geq 1} được gọi là một dãy lồi dưới cấp k nếu có các số thực \alpha_1, \alpha_2,\ldots, \alpha_k sao cho hai điều kiện sau được thỏa mãn đồng thời:

(1) \alpha_i\in (0;1),\quad \forall i=\overline{1,k}\alpha_1+\alpha_2+\cdots+\alpha_k\leq 1.

(2) x_{n+k}\leq \alpha_1x_{n+k-1}+\alpha_2x_{n+k-2}+\cdots+\alpha_kx_n,\quad \forall n\geq 1.

Mọi dãy lồi dưới cấp 1 đều có giới hạn bằng 0. Trong định nghĩa trên, nếu dãy số (x_n) có giới hạn hữu hạn và \sum\alpha_i<1 thì \lim x_n=0.

Định lí. Cho số nguyên dương k. Khi đó mọi dãy lồi dưới cấp k đều có giới hạn hữu hạn.

Chứng minh. Gọi (x_n) là một dãy lồi dưới cấp k. Khi đó tồn tại các số thực \alpha_1, \alpha_2,\ldots, \alpha_k sao cho hai điều kiện sau được thỏa mãn đồng thời:

(1) \alpha_i\in (0;1),\quad \forall i=\overline{1,k}\alpha_1+\alpha_2+\cdots+\alpha_k\leq 1.

(2) x_{n+k}\leq \alpha_1x_{n+k-1}+\alpha_2x_{n+k-2}+\cdots+\alpha_kx_n,\quad \forall n\geq 1.

Xét dãy số (y_n)_{n\geq 1} xác định bởi \displaystyle y_n=\max_{0\leq i\leq k-1}x_{n+i} với mọi số nguyên n>0. Ta thấy (y_n)_{n\geq 1} là một dãy số không tăng và bị chặn dưới bởi 0 nên nó có giới hạn hữu hạn không âm, đặt L=\lim y_n. Ta sẽ chứng minh (x_n) có giới hạn hữu hạn và L=\lim x_n.

Với mọi số thực dương \epsilon, cố định nó.

Đặt \displaystyle t=\min\left\{1;\frac{\alpha_1^k}{2^k(1-\alpha_1)}\right\}.t>0L là giới hạn của dãy số không tăng (y_n) nên tồn tại số nguyên dương n_{\epsilon} để

x_n\leq y_n<L+t\epsilon\leq L+\epsilon,\quad \forall n\geq n_{\epsilon}.\quad (*)

Bây giờ ta chứng minh x_m>L-\epsilon,\quad \forall m\geq k+n_{\epsilon}.\quad (**)

Giả sử tồn tại số nguyên dương m\geq k+n_{\epsilon} sao cho x_m\leq L-\epsilon.

Mệnh đề. \displaystyle x_{m+p}\leq L-\epsilon\left(\frac{\alpha_1}{2}\right)^p,\quad \forall p=\overline{1,k-1}.

Chứng minh. Ta chứng minh bằng quy nạp theo p. Với p=1, từ (*) và cách chọn t ta có

x_{m+1} \leq \alpha_1x_m+\alpha_2x_{m-1}+\cdots+\alpha_kx_{m-k+1}

\leq\alpha_1x_m+(\alpha_2+\cdots+\alpha_k)(L+t\epsilon)

\leq\alpha_1(L-\epsilon)+(1-\alpha_1)(L+t\epsilon)

\leq L-a_1\epsilon+\left(\frac{\alpha_1}{2}\right)^k\epsilon

\leq L-a_1\epsilon+\left(\frac{\alpha_1}{2}\right)^1\epsilon

=L-\epsilon\left(\frac{\alpha_1}{2}\right).

Suy ra khẳng định đúng với p=1. Giả sử khẳng định đúng đến p<k-1, ta chứng minh nó đúng với p+1. Theo giả thiết quy nạp, (*) và cách chọn t ta có

x_{m+p+1} \leq \alpha_1x_{m+p}+\alpha_2x_{m+p-1}+\cdots+\alpha_kx_{m+p-k+1}

\leq\alpha_1\left(L-\epsilon\left(\frac{\alpha_1}{2}\right)^p\right)+(1-\alpha_1)(L+t\epsilon)

=L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p+(1-\alpha_1)t\epsilon

\leq L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p+\left(\frac{\alpha_1}{2}\right)^k\epsilon

\leq L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p +\left(\frac{\alpha_1}{2}\right)^{p+1}\epsilon

=L-\epsilon\left(\frac{\alpha_1}{2}\right)^{p+1}.

Suy ra khẳng định đúng với p+1. Theo nguyên lý quy nạp toán học, mệnh đề là đúng. \Box

Continue reading “Subconvex sequences”