Naive definition of probability


Phép thử ngẫu nhiên, hay phép thử, là một thí nghiệm hay một hành động mà kết quả của nó không thể biết được trước khi phép thử được thực hiện, và khả năng xảy ra của các kết quả là như nhau. Không gian mẫu của phép thử là tập hợp tất cả các kết quả có thể xảy ra khi thực hiện phép thử. Kết quả thuận lợi cho một biến cố (sự kiện) \displaystyle E liên quan đến phép thử \displaystyle T là kết quả của phép thử \displaystyle T làm cho biến cố \displaystyle E xảy ra. Trong bài này ta chỉ xét các phép thử mà không gian mẫu là một tập hợp hữu hạn.

Ví dụ 1. Tung một đồng xu, ta thấy có thể xảy ra một trong hai kết quả sấp (\displaystyle S) hoặc ngửa (\displaystyle N). Phép thử ngẫu nhiên ở đây là tung một đồng xu, không gian mẫu của phép thử là tập hợp \displaystyle \Omega =\{S, N\}. Ta có thể để ý xem các biến cố sau có xảy ra không?

kết quả của phép thử là \displaystyle N.

kết quả của phép thử không là \displaystyle N.

kết quả của phép thử là \displaystyle S hoặc \displaystyle N.

kết quả của phép thử là \displaystyle S\displaystyle N. \Box

Ví dụ 2. Xét phép thử ngẫu nhiên: tung một đồng xu bốn lần. Ta thấy một kết quả là \displaystyle SNNS, và không gian mẫu của phép thử là tập hợp tất cả các dãy gồm \displaystyle 4 chữ cái thuộc \displaystyle \{S,N\}. Chúng ta có thể mã hóa \displaystyle S\displaystyle 1\displaystyle N\displaystyle 0, khi đó mỗi kết quả của phép thử là một dãy \displaystyle (s_1,s_2,s_3,s_4) với các \displaystyle s_j\in\{0;1\} và không gian mẫu của phép thử là tập tất cả các dãy như vậy.

Gọi \displaystyle E_i là sự kiện lần tung thứ \displaystyle i ra mặt ngửa. Tập các kết quả thuận lợi cho \displaystyle E_1, cũng được ký hiệu bởi \displaystyle E_1, là

\displaystyle E_1=\{(0,s_2,s_3,s_4)\mid s_j\in \{0;1\},\quad\forall j\}. Đây là một tập con của không gian mẫu.

Nếu \displaystyle A là biến cố ít nhất một mặt là ngửa thì tập các kết quả thuận lợi cho \displaystyle A, cũng được ký hiệu bởi \displaystyle A, là \displaystyle A=E_1\cup E_2\cup E_3\cup  E_4. Nếu \displaystyle B là biến cố tất cả bốn lần tung đều hiện mặt ngửa thì tập các kết quả thuận lợi cho \displaystyle B\displaystyle B=E_1\cap E_2\cap E_3\cap E_4. \Box

Ví dụ 3. Xét phép thử ngẫu nhiên: Chọn một quân bài từ \displaystyle 52 quân bài. Không gian mẫu \displaystyle \Omega của phép thử là tập tất cả \displaystyle 52 quân bài. Ta quan tâm đến bốn biến cố sau:

\displaystyle A: Quân bài là một con Át.

\displaystyle B: Quân bài có màu đen.

\displaystyle C: Quân bài có chất Rô.

\displaystyle D: Quân bài có chất Cơ.

Như một tập hợp \displaystyle D= {Át cơ, 2 cơ , 3 cơ,…, K cơ}. Ta có thể tạo ra nhiều biến cố từ bốn biến cố này.

\displaystyle A\cap B là biến cố quân bài rút ra là quân Át màu đen.

\displaystyle A\cup C là biến cố quân bài rút ra là quân Át hoặc có chất Rô.

\displaystyle A\cup C\cup D là sự kiện quân bài rút ra là quân Át hoặc có màu đỏ. \Box

Định nghĩa (Định nghĩa ngây thơ của xác suất). Cho \displaystyle A là một biến cố (sự kiện) của một phép thử ngẫu nhiên với không gian mẫu hữu hạn \displaystyle \Omega. Khi đó xác suất của \displaystyle A, hay xác suất xảy ra \displaystyle A, là \displaystyle \mathbb{P}(A)=\frac{\mid A\mid }{\mid \Omega\mid}.

Theo định nghĩa thì \displaystyle 0\leq \mathbb{P}(A)\leq 1, với mọi sự kiện \displaystyle A. Dấu bằng trong bất đẳng thức thứ nhất xảy ra khi và chỉ khi \displaystyle A=\emptyset, lúc này ta gọi \displaystyle A là biến cố rỗng hay biến cố không thể. Dấu bằng trong bất đẳng thức thứ hai xảy ra khi và chỉ khi \displaystyle A=\Omega, lúc này ta gọi \displaystyle A là biến cố chắc chắn. Để tính xác suất của biến cố \displaystyle A, ta cần tính số phần tử của không gian mẫu và số phần tử của \displaystyle A (như một tập hợp).

Ví dụ 4. Tung hai con xúc xắc cân đối. Tính xác suất để tổng hai mặt bằng \displaystyle 10.

Lời giải. Không gian mẫu \displaystyle \Omega là tập tất cả các cặp \displaystyle (a,b) với \displaystyle a\displaystyle b thuộc \displaystyle \{1,2,\ldots,6\}. Tập các kết quả thuận lợi cho biến cố tổng hai mặt bằng \displaystyle 10\displaystyle \{(5,5),(6,4),(4,6)\}, suy ra xác suất cần tính bằng \displaystyle 3/36=1/12\approx 0.0833. \Box

Ví dụ 5. Một ván bài \displaystyle 5 lá được chia từ một bộ bài \displaystyle 52 lá tiêu chuẩn, được xáo trộn kỹ lưỡng. Ván bài được gọi là cù lũ trong poker nếu nó bao gồm ba lá bài ở cấp độ nào đó và hai lá bài ở cấp độ khác, ví dụ: ba lá bài \displaystyle 7 và hai lá bài \displaystyle 10 (theo bất kỳ thứ tự nào). Xác suất để có một cù lũ bằng bao nhiêu?

Lời giải. Không gian mẫu là họ tất cả các tập con gồm \displaystyle 5 lá bài trong bộ bài đã cho. Ta có ngay \displaystyle \mid \Omega \mid =C_{52}^5. Có \displaystyle 13\times 12 cách chọn lần lượt hạng của bộ ba và đôi trong một cù lũ. Sau đó, có \displaystyle C_4^3\times C_4^2 cách chọn lần lượt một bộ ba và một đôi trong các hạng đã chọn trước đó. Suy ra xác suất cần tính bằng \displaystyle \frac{13\times 12\times C_4^3\times C_4^2}{C_{52}^5}=\frac{3744}{2598960}\approx 0.0014. \Box

Continue reading “Naive definition of probability”

Least upper bound property


Một tập \displaystyle A \subset\mathbb{R} được gọi là bị chặn trên nếu tồn tại \displaystyle b \in \mathbb{R} sao cho \displaystyle a \leq b với mọi \displaystyle a \in A. Số \displaystyle b được gọi là một cận trên của \displaystyle A. Tương tự, tập \displaystyle A bị chặn dưới nếu tồn tại một cận dưới \displaystyle l \in \mathbb{R} thỏa mãn \displaystyle l \leq a với mọi \displaystyle a \in A. Tập \displaystyle A được gọi là bị chặn nếu nó bị chặn trên và bị chặn dưới.

Bài tập 1. Tìm một tập hợp \displaystyle A các số thực sao cho:

(1) \displaystyle A bị chặn trên.

(2) \displaystyle A bị chặn dưới.

(3) \displaystyle A không bị chặn trên và không bị chặn dưới. \Box

Định nghĩa 1. Một số thực \displaystyle s được gọi là cận trên đúng của \displaystyle A \subset \mathbb{R} nếu nó thỏa mãn đồng thời hai điều kiện:

(1) \displaystyle s là một cận trên của \displaystyle A.

(2) nếu \displaystyle b là một cận trên của \displaystyle A thì \displaystyle s \leq b.

Cận trên đúng cũng thường được gọi là supremum của tập \displaystyle A, ký hiệu \displaystyle \sup A. Cận dưới đúng hay infimum của \displaystyle A được định nghĩa theo cách tương tự và được ký hiệu bởi \displaystyle \inf A. Mặc dù một tập có thể có vô hạn cận trên, nhưng nó chỉ có tối đa một cận trên đúng.  

Ví dụ 1. Cho tập hợp \displaystyle A=\left\{\frac{1}{n}: n \in \mathbb{N}^*\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}.

Tập A bị chặn trên và dưới. Ta thấy \sup A=1\inf A=0. \Box

Một bài học quan trọng rút ra từ ví dụ trên là \displaystyle \sup A\displaystyle \inf A có thể thuộc hoặc không thuộc tập \displaystyle A. Đây là điểm khác nhau cốt yếu giữa phần tử lớn nhất và cận trên đúng (hoặc phần tử nhỏ nhất và cận dưới đúng) của một tập số thực.

Định nghĩa 2. Một số thực \displaystyle a_{0} được gọi là phần tử lớn nhất của tập \displaystyle A, ký hiệu \displaystyle \max A, nếu \displaystyle a_{0} là một phần tử của \displaystyle A\displaystyle a_{0} \geq a với mọi \displaystyle a \in A. Tương tự, số \displaystyle a_{1} là phần tử nhỏ nhất của \displaystyle A, ký hiệu \displaystyle \min A, nếu \displaystyle a_{1} \in A\displaystyle a_{1} \leq a với mọi \displaystyle a \in A.

Ví dụ 2. Hai tập \displaystyle [0;2]\displaystyle (0;2) bị chặn, có cùng cận trên đúng \displaystyle 2, nhưng chỉ \displaystyle [0;2] có phần tử lớn nhất. Như vậy, cận trên đúng có thể tồn tại và không phải là phần tử lớn nhất, nhưng khi phần tử lớn nhất tồn tại, nó cũng là cận trên đúng. \Box

Mặc dù ta có thể thấy rằng không phải mọi tập hợp khác rỗng bị chặn trên nào đều có phần tử lớn nhất, nhưng tiên đề về tính đầy đủ khẳng định rằng mọi tập hợp như vậy đều có một cận trên đúng. Ta sẽ không chứng minh điều này. Tiên đề trong toán học là một giả định được chấp nhận, được sử dụng mà không cần chứng minh.

Tiên đề về tính đầy đủ. Mọi tập các số thực khác rỗng và bị chặn trên đều có cận trên đúng.

Từ tiên đề trên ta có thể chứng minh mọi tập số thực khác rỗng và bị chặn dưới đều có cận dưới đúng. Tiên đề không đúng với tập các số hữu tỷ.

Ví dụ 3. Tập \{r\in\mathbb{Q}\mid r^2<2\} bị chặn trên và khác rỗng nhưng không có cận trên đúng thuộc \mathbb{Q}. \Box

Hai định lý sau cho một định nghĩa tương đương của cận trên đúng và cận dưới đúng.

Continue reading “Least upper bound property”