Continued fraction expansion of irrational numbers


In this section we use continued fractions for expansion of irrational numbers.

Theorem 1. Let \displaystyle (x_n)_{n\geq 0} be a sequence of intergers with \displaystyle x_i>0 for every \displaystyle i>0. Then the sequence \displaystyle (p_n/q_n)_{n\geq 0} is a convergent sequence, and the its limit is an irrational number. We denote this limit by \displaystyle [x_0;x_1,x_2,\ldots].

Proof. From [1] we have \displaystyle q_1\geq q_0=1>0 and for all \displaystyle n>1, \displaystyle q_n=x_nq_{n-1}+q_{n-2}, hence by induction on \displaystyle n, \displaystyle q_{n+1}>q_n for every \displaystyle n\geq 1. Therefore \displaystyle\lim_{n\to \infty}q_n=\infty.

By the Proposition 4 in [1], for all \displaystyle n\geq 0,

\displaystyle \frac{p_n}{q_n}-\frac{p_{n+1}}{q_{n+1}}=\frac{(-1)^{n-1}}{q_nq_{n+1}},\quad\quad (1)

hence \displaystyle \frac{p_n}{q_n}-\frac{p_{n+2}}{q_{n+2}}=\frac{(-1)^{n-1}(q_{n+2}-q_n)}{q_nq_{n+1}q_{n+2}},\quad \forall n\geq 0. Therefore

\displaystyle \frac{p_1}{q_1}>\frac{p_3}{q_3}>\frac{p_5}{q_5}>\ldots>\frac{p_0}{q_0}

and

\displaystyle \frac{p_0}{q_0}<\frac{p_2}{q_2}<\frac{p_4}{q_4}<\ldots<\frac{p_1}{q_1},

hence \displaystyle (p_{2n}/q_{2n})_{n\geq 0} and \displaystyle (p_{2n+1}/q_{2n+1})_{n\geq 0} are convergent sequences. By (1) and \displaystyle q_n\to\infty we have

\displaystyle\lim_{n\to\infty}\frac{p_{2n}}{q_{2n}}=\lim_{n\to\infty}\frac{p_{2n+1}}{q_{2n+1}}, so \displaystyle (p_n/q_n)_{n\geq 0} is a convergent sequence.

Now we prove \displaystyle \displaystyle \alpha:=\lim_{n\to\infty}\frac{p_n}{q_n} is an irrational number. We have

\displaystyle \frac{p_{2m}}{q_{2m}}<\alpha<\frac{p_{2n+1}}{q_{2n+1}},\quad\forall m,n\geq 0.

Thus, by (1),

\displaystyle\left|\alpha-\frac{p_{2n}}{q_{2n}}\right|\leq \frac{1}{q_{2n}q_{2n+1}}<\frac{1}{q_{2n}^2},\quad\forall n\geq 1.

By the Proposition 2 in [1], \displaystyle p_{2n} and \displaystyle q_{2n} are coprime integers for every \displaystyle n\geq 1, hence there are infinite rational numbers \displaystyle r/s, with \displaystyle s>0 and \displaystyle (r,s)=1, such that

\displaystyle \left|\alpha-\frac{r}{s}\right| <\frac{1}{s^2}.\quad\quad (2)

Assume that \displaystyle \alpha is rational and write \displaystyle \alpha=p/q, where \displaystyle p and \displaystyle q>0 are coprime integers. For all positive integers \displaystyle s, at most two integers \displaystyle r satisfy the equation (2), hence there are coprime integers \displaystyle r_0 and \displaystyle s_0>q such that

\displaystyle\left|\frac{p}{q}-\frac{r_0}{s_0}\right| <\frac{1}{s_0^2}.

From the inequality we have \displaystyle \mid ps_0-qr_0\mid <1, hence \displaystyle ps_0=qr_0, a contradiction. Therefore \displaystyle \alpha is an irrational number. \Box

Theorem 2. Let \displaystyle \alpha be an irrational number. Then there is a unique sequence of integers \displaystyle (a_n)_{n\geq 0} such that

(1) \displaystyle a_i>0 for every \displaystyle i>0.

(2) \displaystyle \alpha =[a_0;a_1,a_2,\ldots].

Proof. In this proof, \displaystyle [x] is the integer part of \displaystyle x. Because \displaystyle \alpha is an irrational number, we have \displaystyle [\alpha]<\alpha<[\alpha]+1, hence there is a real number \displaystyle u_1>1 such that

\displaystyle \alpha=[\alpha]+\frac{1}{u_1}.

Because \displaystyle \alpha is an irrational and \displaystyle [\alpha] is an integer, \displaystyle u_1 is an irrational number. Hence there is an irrational number \displaystyle u_2>1 such that

\displaystyle u_1=[u_1]+\frac{1}{u_2},

and so on. Therefore we have real numbers \displaystyle u_0:=\alpha, u_1>1, \displaystyle u_2>1, \displaystyle \ldots such that \displaystyle u_i is irrationals for every \displaystyle i>0 and

\displaystyle u_k=[u_k]+\frac{1}{u_{k+1}},\quad\forall k\geq 0.

We claim that \displaystyle \alpha=[[u_0];[u_1],[u_2],\ldots]. Fix a \displaystyle k>2. We have

\displaystyle \alpha=[[u_0];[u_1],\ldots, [u_k],u_{k+1}].

Hence, by Proposition 4 in [1],

\displaystyle \left|\alpha-\frac{p_k}{q_k}\right|=\frac{1}{q_k(u_{k+1}q_{k}+q_{k-1})}<\frac{1}{q_k^2},

so \displaystyle \lim_{n\to\infty}\frac{p_n}{q_n}=\alpha. Now assume that

\displaystyle \alpha =[a_0;a_1,a_2,\ldots]=[b_0;b_1,b_2,\ldots],

where \displaystyle (a_n)_{n\geq 0} and \displaystyle (b_n)_{n\geq 0} are two sequences of integers such that \displaystyle a_i>0 and \displaystyle b_i>0 for every \displaystyle i>0.

Because

\displaystyle [a_0;a_1,a_2,\ldots,a_{n}]=a_0+\frac{1}{[a_1;a_2,\ldots,a_n]},\quad\forall n\geq 0,

we have

\displaystyle [a_0;a_1,a_2,\ldots]=a_0+\frac{1}{[a_1;a_2,\ldots]}.

Hence \displaystyle a_0=b_0=[\alpha] and \displaystyle [a_1;a_2,a_3,\ldots] = [b_1;b_2,b_3,\ldots]. Similarly, \displaystyle a_1=b_1 and

\displaystyle [a_2;a_3,a_4,\ldots] = [b_2;b_3,b_4,\ldots],

and so on. Therefore \displaystyle a_i=b_i for every i. \Box

The equality in the theorem is called an expansion of \displaystyle \alpha into a infinite continued fraction. In that expansion we will call \displaystyle [a_0;a_1,a_2,\ldots,a_i] is the \displaystyle i-th convergent of the continued fraction, or \displaystyle i-th convergent of \displaystyle \alpha. The theorem says that for every irrational number has an expansion into a infinite continued fraction, and this expansion is unique.

Example 1. \displaystyle \sqrt{2}=[1;2,2,\ldots].

Example 2. The golden ratio \displaystyle\varphi:=\frac{1+\sqrt{5}}{2}=[1;1,1,\ldots].

Example 3. \displaystyle e=[2;1,2,1,1,4,1,1,6,1,1,8,\ldots].

A sequence \displaystyle (a_n)_{n\geq 0} is called eventually periodic if \displaystyle a_{n+T}=a_n for some positive integer \displaystyle T and sufficiently large \displaystyle n. A real number is called quadratic irrational number, if there is a polynomial \displaystyle P(x) is of degree two with rational coefficients such that \displaystyle P(x) is an irreducible polynomial (see [3]) over the rational numbers and \displaystyle \alpha is a root of \displaystyle P(x).

Theorem 3. Let \displaystyle \alpha be an irrational number and \displaystyle \alpha =[a_0;a_1,a_2,\ldots] is the expansion of \displaystyle\alpha into a infinite continued fraction. Then \displaystyle (a_n)_{n\geq 1} is eventually periodic if and only if \displaystyle \alpha is a quadratic irrational.

References

[1] https://nttuan.org/2008/10/12/continued-fractions-the-basics/

[2] https://nttuan.org/2008/11/14/continued-fraction-expansion-of-rational-numbers/

[3] https://nttuan.org/2009/01/11/poly02/

Continued fraction expansion of rational numbers


In this section we use continued fractions ([2]) for expansion of rational numbers. If \displaystyle x_0, \displaystyle x_1, \displaystyle \ldots, are integer nunbers with \displaystyle x_i>0 for every \displaystyle i>0 then \displaystyle [x_0;x_1,x_2,\ldots,x_n]\in\mathbb{Q},\quad\forall n\geq 0.

Conversly, we have the theorem

Theorem 1. Let \displaystyle r and \displaystyle s be coprime integers with \displaystyle s>0. Then there are non negative integer \displaystyle n and integers \displaystyle a_0, \displaystyle a_1, \displaystyle \ldots, \displaystyle a_n such that

(1) \displaystyle a_i>0 for every \displaystyle i=1,2,\ldots,n.

(2) \displaystyle r/s=[a_0;a_1,a_2,\ldots,a_n].

Proof. Let us proceed by induction on \displaystyle s. The case \displaystyle s=1 is trivial. Now suppose that the assertion is true for all positive integers up to \displaystyle s-1 (\displaystyle s>1). Because \displaystyle (r,s)=1 and \displaystyle s>1, we have \displaystyle s\nmid r. Hence by the Division Algorithm ([1]), there are integers \displaystyle a and \displaystyle b such that

\displaystyle r=sa+b,\quad 1\leq b<s.\quad\quad (1)

By the hypothesis of the induction, there are integers \displaystyle m>0, \displaystyle a_1, \displaystyle a_2>0, \displaystyle \ldots, \displaystyle a_m>0 such that

\displaystyle \frac{s}{b}=[a_1;a_2,a_3,\ldots,a_m].\quad\quad (2)

Because \displaystyle s>b, we have \displaystyle a_1>0. From (1) and (2) we have

\displaystyle \frac{r}{s}=a+\frac{1}{s/b}=a+\frac{1}{[a_1;a_2,a_3,\ldots,a_m]}=[a;a_1,a_2,\ldots,a_m], completing the induction step. \Box

The equality in the theorem is called an expansion of \displaystyle r/s into a finite continued fraction. In that expansion we will call \displaystyle [a_0;a_1,a_2,\ldots,a_i] is the i-th convergent of the continued fraction, or i-th convergent of \displaystyle r/s.

Example 1. Find an expansion of \displaystyle 43/5 into a finite continued fraction.

Solution. By the Division Algorithm, we have

\displaystyle 43=5\cdot 8+3\quad\quad\frac{43}{5}=8+\frac{3}{5}=8+\frac{1}{5/3}, and

\displaystyle 5= 3\cdot 1 +2\quad\quad\frac{5}{3}=1+\frac{2}{3}=1+\frac{1}{3/2}, and \displaystyle \frac{3}{2}=1+\frac{1}{2}. Therefore \displaystyle 43/5=[8;1,1,2]. \Box

The theorem says that for every rational number has an expansion into a finite continued fraction. But this expansion is not unique.

Example 2. \displaystyle 13/5=[2;1,1,2]=[2;1,1,1,1]. \Box

Theorem 2. Let \displaystyle \alpha be an integer number. Then \displaystyle \alpha has exactly two expansions into a finite continued fraction.

Proof. By the theorem 1, we can write

\displaystyle \alpha=[a_0;a_1,a_2,\ldots,a_n],

where a_0, a_1, \ldots, a_n are integers such that a_i>0 for every i=1,2,\ldots,n. If \displaystyle n=0 then \displaystyle \alpha=a_0 and \displaystyle \alpha=[\alpha] is an expansion of \displaystyle \alpha. If \displaystyle n=1 then \displaystyle \alpha=a_0+\frac{1}{a_1}, hence \displaystyle \frac{1}{a_1} is an integer, so \displaystyle a_1=1. Therefore \displaystyle \alpha=[\alpha-1;1] is an expansion of \displaystyle \alpha.

Now assume that \displaystyle n\geq 2. We have

\displaystyle \alpha-a_0=\frac{1}{[a_1;a_2,\ldots,a_n]}

is an integer number and \displaystyle [a_1;a_2,\ldots,a_n]>0 , hence \displaystyle [a_1;a_2,\ldots,a_n]\leq 1. This claim is false because \displaystyle n\geq 2 and \displaystyle a_i\geq 1 for every \displaystyle i=1,2,\ldots,n. \Box

Theorem 3. Let \displaystyle \alpha be a rational number but not an integer. Then \displaystyle \alpha has exactly two expansions into a finite continued fraction.

Proof. Assume that \displaystyle \alpha=\alpha=r/s, where \displaystyle r and \displaystyle s>1 are coprime integers. We prove by induction on \displaystyle s that \displaystyle \alpha has exactly two expansions into a finite continued fraction

\displaystyle \alpha=[a_0;a_1,\ldots,a_n]=[a_0;a_1,\ldots,a_n-1,1],

where \displaystyle a_n>1. If \displaystyle s=2, because \displaystyle (r,s)=1 there is an integer \displaystyle k such that \displaystyle r=2k+1. By the theorem 1, we can write

\displaystyle \alpha=k+\frac{1}{2}=[a_0;a_1,a_2,\ldots,a_n],

where a_0, a_1, \ldots, a_n are integers such that a_i>0 for every i=1,2,\ldots,n. We have n>0 and a_0=k, hence \displaystyle 2=[a_1;a_2,\ldots,a_n]. By the theorem 2, we have 2 has exactly two expansions into a finite continued fraction, those are 2=[2] and 2=[1;1], therefore \alpha has exactly two expansions \displaystyle \alpha=[k;2]=[k;1,1], hence the claim is true for \displaystyle s=2. Now suppose that the claim is true for \displaystyle 2, \displaystyle 3, \displaystyle \ldots, \displaystyle s-1 (\displaystyle s>2). By the theorem 1, we can write

\displaystyle \alpha=[a_0;a_1,a_2,\ldots,a_n],

where a_0, a_1, \ldots, a_n are integers such that a_i>0 for every i=1,2,\ldots,n. We have n>0 and a_0=[\alpha] (integer part of \alpha), hence \displaystyle \frac{1}{\alpha-[\alpha]}=[a_1;a_2,\ldots,a_n]. By the Division Algorithm, there is an integer \displaystyle a such that \displaystyle r=s[\alpha]+a and 1\leq a<s, then

\displaystyle \frac{s}{a}=[a_1;a_2,\ldots,a_n].

If a=1 then a_1>1 and by the theorem 2, we have s/a has exactly two expansions are s/a=[a_1] and \displaystyle s/a=[a_1-1;1]. If \displaystyle a>1 then by the hypothesis of the induction (note that \displaystyle s and \displaystyle a are coprime integers), \displaystyle s/a has exactly two expansions are

\displaystyle \frac{s}{a}=[a_1;b_2,\ldots,b_n]=[a_1;b_2,\ldots,b_n-1,1],

where \displaystyle b_n>1. Therefore \displaystyle \alpha has exactly two expansions, and the claim is true for \displaystyle s. \Box

References

[1] https://nttuan.org/2020/01/14/divisibility/

[2] https://nttuan.org/2008/11/14/continued-fraction-expansion-of-rational-numbers/

Continued fractions: The basics


Let x_0, \displaystyle x_1, \displaystyle x_2, \displaystyle \ldots be variables. We define two sequences of polynomials with complex coefficients \displaystyle \{p_n\}_{n\geq 0} and \displaystyle \{q_n\}_{n\geq 0} by conditions following:

(1) For all non negative integer \displaystyle n, \displaystyle p_n and \displaystyle q_n are polynomials in \displaystyle x_0,x_1,\ldots,x_n.

(2) \displaystyle p_0=x_0 and \displaystyle q_0=1.

(3) For all positive integer \displaystyle n, \displaystyle p_n=x_0p_{n-1}(x_1,x_2,\ldots,x_n)+q_{n-1}(x_1,x_2,\ldots,x_n) and

\displaystyle q_n=p_{n-1}(x_1,x_2,\ldots,x_n).

Example. We have

\displaystyle p_1=x_0x_1+1 and \displaystyle q_1=x_1, therefore \displaystyle \frac{p_1}{q_1}=x_0+\frac{1}{x_1}.

\displaystyle p_2=x_0x_1x_2+x_0+x_2 and \displaystyle q_2=x_1x_2+1, hence

\displaystyle \frac{p_2}{q_2}=x_0+\frac{x_2}{x_1x_2+1}=x_0+\cfrac{1}{x_1+\cfrac{1}{x_2}}. \Box

For all non negative integer \displaystyle n we have

\displaystyle [x_0;x_1,x_2,\ldots,x_n]:=\frac{p_n}{q_n}=x_0+\cfrac{1}{x_1+\cfrac{1}{x_2+\cfrac{1}{x_3+\cdots+\cfrac{1}{x_{n-1}+\cfrac{1}{x_n}}}}}.

A rational function of this form is called a continued fraction.

Proposition 1. For all \displaystyle n>1, we have \displaystyle p_n=x_np_{n-1}+p_{n-2} and \displaystyle q_n=x_nq_{n-1}+q_{n-2}.

Proof. We use induction on \displaystyle n. From the above example we have the assertion is true for \displaystyle n=2. Now suppose that the assertion has been established for \displaystyle n-1 (\displaystyle n>2). Then we have

\displaystyle p_{n-1}(x_1,x_2,\ldots,x_n)=x_np_{n-2}(x_1,x_2,\ldots,x_{n-1})+p_{n-3}(x_1,x_2,\ldots,x_{n-2})

and

\displaystyle q_{n-1}(x_1,x_2,\ldots,x_n)=x_nq_{n-2}(x_1,x_2,\ldots,x_{n-1})+q_{n-3}(x_1,x_2,\ldots,x_{n-2}).

Therefore by define of \displaystyle \{p_n\} and \displaystyle \{q_n\},

\displaystyle p_n=x_0p_{n-1}(x_1,x_2,\ldots,x_n)+q_{n-1}(x_1,x_2,\ldots,x_n)=x_np_{n-1}+p_{n-2},

and \displaystyle q_n=x_nq_{n-1}+q_{n-2}. Thus the assertion is true for \displaystyle n. \Box

For convenience, we define \displaystyle p_{-2}=0, \displaystyle p_{-1}=1, \displaystyle q_{-2}=1, and \displaystyle q_{-1}=0.

Proposition 2. For all \displaystyle n>-2, we have \displaystyle p_nq_{n-1}-q_np_{n-1}=(-1)^{n-1}.

Proof. We prove by induction on \displaystyle n. The case \displaystyle n=-1 is trivial. Now suppose that the assertion is true for \displaystyle n-1 (\displaystyle n\geq 0). Then by proposition 1, we have

\displaystyle p_nq_{n-1}-q_np_{n-1}=(x_np_{n-1}+p_{n-2})q_{n-1}-(x_nq_{n-1}+q_{n-2})p_{n-1}

=-(p_{n-1}q_{n-2}-q_{n-1}p_{n-2})=(-1)^{n-1}.

Therefore the assertion is true for \displaystyle n-1. \Box

Proposition 3. For all \displaystyle n>-1, we have \displaystyle p_nq_{n-2}-q_np_{n-2}=(-1)^nx_n.

Proof. Assume \displaystyle n>-1 is an integer number. By propositions 1 and 2, we have

\displaystyle p_nq_{n-2}-q_np_{n-2}=(x_np_{n-1}+p_{n-2})q_{n-2}-(x_nq_{n-1}+q_{n-2})p_{n-2} =x_n(p_{n-1}q_{n-2}-q_{n-1}p_{n-2})=(-1)^nx_n. \Box

Proposition 4. If \displaystyle n\geq 0 and \displaystyle \theta:=[x_0;x_1,x_2,\ldots,x_{n+1}] then \displaystyle p_n-\theta q_n=\frac{(-1)^{n-1}}{q_{n+1}}.

Proof. By proposition 2, we have

\displaystyle p_n-\theta q_n=p_n-\frac{p_{n+1}}{q_{n+1}}\cdot q_n=\frac{-(p_{n+1}q_n-q_{n+1}p_n)}{q_{n+1}}=\frac{(-1)^{n-1}}{q_{n+1}}. \Box