Combinations


Cho một tập An phần tử (n\in\mathbb{N}) và 0\leq k\leq n là một số nguyên. Một k-tổ hợp (một tổ hợp chập k) của A là một tập con k phần tử của A.

Ví dụ 1. Các 3-tổ hợp của A=\{a,b,c,d\}

\{a,b,c\},\{b,c,d\},\{c,d,a\},\{d,a,b\}.

Định lí 1. Cho một tập An phần tử (n\in\mathbb{N}) và 0\leq k\leq n là một số nguyên. Khi đó số k-tổ hợp của A bằng C_n^k=\dfrac{A_n^k}{k!}=\dfrac{n!}{k!(n-k)!}.

Chứng minh. Sự khác nhau giữa một k-tổ hợp và một k-hoán vị chính là một đằng không quan tâm đến thứ tự, trong khi đằng kia có quan tâm đến thứ tự. Tận dụng điều này ta có chứng minh như sau.

Một k-hoán vị của A có thể hình thành sau hai bước: Đầu tiên, chọn một k-tổ hợp của A; sau đó xếp k phần tử của tập này thành một hàng. Bởi vì có C_n^k cách để làm bước một, k! cách để làm bước hai nên theo nguyên lý nhân ta có A_n^k=C_n^k\times k!. \Box

Ví dụ 2. Có bao nhiêu xâu nhị phân độ dài 7 mà có đúng ba số 0?

Lời giải. Một xâu nhị phân có tính chất như trong đề bài sẽ được hình thành khi ta chọn 3 vị trí trong 7 vị trí để viết số 0. Do đó số xâu thỏa mãn là C_7^3. \Box

Ví dụ 3. Có bao nhiêu cách có thể thành lập một hội đồng gồm 5 thành viên từ một nhóm có 11 người chứa 4 giáo viên và 7 học sinh nếu

(1) Không có thêm điều kiện gì?

(2) Hội đồng chứa đúng 2 giáo viên?

(3) Hội đồng chứa ít nhất 3 giáo viên?

(4) Giáo viên A và học sinh B không thể cùng nằm trong hội đồng?

Hướng dẫn giải. (1) C_{11}^5. (2) C_4^2\times C_7^3. (3) 3 hoặc 4 giáo viên có thể nằm trong hội đồng, đáp số 91.

(4) Dùng quy tắc trừ, đáp số 378. \Box

Ví dụ 4. Cho n là một số nguyên dương và A là một tập có 2n phần tử. Có bao nhiêu cách phân hoạch A thành các tập có 2 phần tử?

Lời giải 1. Đầu tiên, cố định một phần tử x của A và chọn một phần tử trong 2n-1 phần tử còn lại của A để ghép lại với x tạo thành một khối của phân hoạch; sau đó cố định một phần tử y trong các phần tử còn lại của A và chọn một phần tử trong 2n-3 phần tử còn lại của A để ghép lại với y tạo thành một khối của phân hoạch; ta cứ làm như vậy cho đến khi còn 2 phần tử thì đây chính là khối còn lại của phân hoạch. Theo quy tắc nhân, số phân hoạch thoả mãn là (2n-1)\times (2n-3)\times\cdots\times 1. \Box

Lời giải 2. Chọn một tập con có 2 phần tử của A làm khối thứ nhất, sau đó chọn một tập con có 2 phần tử của tập hợp gồm 2n-2 phần tử còn lại làm khối thứ hai, ta cứ làm như vậy cho đến khi còn hai phần tử thì đây chính là khối thứ n. Vì thứ tự các khối là không quan trọng nên số các phân hoạch thoả mãn là \dfrac{C_{2n}^2\times C_{2n-2}^2\times\cdots\times C_2^2}{n!}. \Box

Lời giải 3. Ta xếp 2n phần tử của A thành một hàng vào 2n vị trí như hình dưới đây

\{(1),(2)\},\{(3),(4)\},\cdots,\{(2n-1),(2n)\}(2n)! cách để làm điều này. Vì trong mỗi tập con có 2 phần tử thứ tự các phần tử là không quan trọng và thứ tự các khối của phân hoạch là không quan trọng nên số phân hoạch thoả mãn là

\dfrac{(2n)!}{2!\times 2!\times\cdots\times 2!\times n!}=\dfrac{(2n)!}{n!\times 2^n}. \Box

Continue reading “Combinations”

Permutations


Cho n là một số nguyên dương, r là một số nguyên thoả mãn 0\leq r\leq nA là một tập hợp có n phần tử. Một r-hoán vị của A (hay một chỉnh hợp chập r của A) là một cách xếp r phần tử nào đó của A thành một hàng. Một n-hoán vị của A sẽ được gọi là một hoán vị của A.

Ví dụ 1. Cho tập A=\{a,b,c,d\}. Khi đó các 3-hoán vị của A là (có tất cả 24):

abc,acb,bac,bca,cab,cba,

abd,adb,bad,bda,dab,dba,

acd,adc,cad,cda,dac,dca,

bcd,bdc,cbd,cdb,dbc,dcb. \Box

Định lí 1. Cho n là một số nguyên dương, r là một số nguyên thoả mãn 0\leq r\leq nA là một tập hợp có n phần tử. Khi đó số r-hoán vị của A bằng A_n^r=\dfrac{n!}{(n-r)!}. Nói riêng, số hoán vị của A bằng P_n=n!.

Chứng minh. Một r-hoán vị của A sẽ được hình thành sau r bước: Đầu tiên, chọn một phần tử từ A và đặt nó vào vị trí thứ nhất; sau đó ta chọn trong các phần tử còn lại của A một phần và đặt nó vào vị trí thứ hai;…; và cuối cùng ta chọn một phần tử từ n-r+1 phần tử còn lại của A và đặt nó vào vị trí thứ r. Vì có n cách làm bước thứ nhất, n-1 cách làm bước thứ hai;…; và n-r+1 cách làm bước thứ r nên theo quy tắc nhân, ta có A_n^r=n(n-1)\cdots (n-r+1)=\dfrac{n!}{(n-r)!}. \Box

Ví dụ 2. Gọi E là tập tất cả 26 chữ cái tiếng Anh. Tìm số các từ gồm 5 chữ trong E sao cho chữ đầu tiên, chữ cuối cùng là các nguyên âm phân biệt và ba chữ còn lại là các phụ âm phân biệt.

Lời giải.5 nguyên âm trong E đó là a,e,i,o,u21 chữ cái còn lại là các phụ âm. Một từ thỏa mãn yêu cầu của đầu bài sẽ được hình thành sau hai bước: Đầu tiên, chọn một 2-hoán vị của \{a,e,i,o,u\} và đặt nguyên âm thứ nhất vào vị trí 1, nguyên âm thứ hai vào vị trí 5, sau đó chọn một 3-hoán vị của E\setminus \{a,e,i,o,u\} và đặt phụ âm thứ nhất, hai, ba của hoán vị vào vị trí 2,3,4 tương ứng.

Bởi vì có A_5^2 cách để làm bước thứ nhất và A_{21}^3 cách để làm bước thứ hai nên theo quy tắc nhân ta có số các từ thoả mãn là A_5^2\times A_{21}^3=159600. \Box

Continue reading “Permutations”

Basic counting principles


Nguyên lý thứ nhất (Quy tắc cộng). Giả sử có n_1 cách thực hiện việc E_1, n_2 cách thực hiện việc E_2,…,n_k cách thực hiện việc E_k. Nếu k việc này không thể làm đồng thời thì sẽ có n_1+n_2+\cdots+n_k cách thực hiện một trong các việc E_1,E_2,\ldots,E_k.

Ví dụ 1. Người ta có thể đi từ Hải Phòng đến Đà Nẵng bằng một trong ba phương tiện: tàu hoả, tàu thuỷ và máy bay. Nếu có hai cách đi bằng tàu hoả, ba cách đi bằng tàu thuỷ, và 1 cách đi bằng máy bay thì sẽ có 2+3+1=6 cách đi từ Hải Phòng đến Đà Nẵng. \Box

Ví dụ 2. Tìm số các cặp có thứ tự (x;y) các số nguyên thoả mãn x^2+y^2\leq 5.

Lời giải. Mỗi i=0,1,2,3,4,5 ta đặt S_i=\{(x,y)|x,y\in\mathbb{Z},x^2+y^2=i\}, khi đó tập cần tính số phần tử sẽ là hợp rời rạc của các S_i. Ta tính số phần tử của các S_i bằng phương pháp liệt kê và cuối cùng được đáp số của bài toán là 21. \Box

Nguyên lý thứ hai (Quy tắc nhân). Giả sử rằng việc E có thể được làm bằng cách thực hiện liên tiếp các việc E_1,E_2,\ldots,E_k; và có n_1 cách thực hiện việc E_1, n_2 cách thực hiện việc E_2,…,n_k cách thực hiện việc E_k. Khi đó số cách làm việc En_1\times n_2\times\cdots\times n_k.

Ví dụ 3. Đề đi từ thành phố A đến thành phố D người ta phải đi lần lượt qua hai thành phố BC. Nếu có hai cách đi từ A đến $B$, ba cách đi từ B đến C và một cách đi từ C đến D thì sẽ có 2\times 3\times 1=6 cách đi từ A đến D. \Box

Ví dụ 4. Cho kn là các số nguyên dương. Một dãy k-phân độ dài n là một dãy (a_1,a_2,\ldots,a_n) với a_1,a_2,\ldots,a_n\in\{0,1,\ldots,k-1\}. Hỏi có bao nhiêu dãy này?

Lời giải. Đặt A=\{0,1,\ldots,k-1\}. Để hình thành một dãy k-phân, đầu tiên chúng ta cần chọn a_1 từ B, sau đó chọn a_2 từ B, và cứ như thế cho đến cuối cùng cần chọn a_n từ B. Bởi vì có k cách để làm mỗi bước nên theo quy tắc nhân, số các dãy như vậy bằng k^n. \Box

Ví dụ 5. Tìm số các ước dương của 600.

Lời giải. Ta có 600=2^3\times 3^1\times 5^2 nên một số nguyên dương m là một ước dương của 600 khi và chỉ khi nó có dạng m=2^a\times 3^b\times 5^c với a,b,c là các số nguyên thoả mãn 0\leq a\leq 3,0\leq b\leq 1,0\leq c\leq 2. Như vậy số các ước dương của 600 bằng số các bộ ba (a,b,c) thoả mãn a\in\{0,1,2,3\},b\in\{0,1\},c\in\{0,1,2\}, theo quy tắc nhân, số ước dương của 600 bằng 4\times 2\times 3=24. \Box

Tổng quát hơn ta có: Nếu số nguyên dương n có phân tích tiêu chuẩn n=\prod p_i^{k_i} thì số các ước dương của n bằng \prod (k_i+1).

Ví dụ 6. Cho X=\{1,2,\ldots,100\}

S=\{(a,b,c)\mid a,b,c\in X,a<b,a<c\}. Tính |S|.

Lời giải. Với mỗi k=1,2,\cdots,99 ta đặt S_k=\{(k,b,c)|b,c\in X, b>k,c>k\}. Khi đó S là hợp rời rạc của các S_k, mà theo quy tắc nhân ta có |S_k|=(100-k)^2 nên suy ra |S|=\sum S_k=328350\Box.

Để ý đến lời giải ví dụ thứ hai và thứ sáu, ta thấy chúng có một điểm chung là chia bài toán đã cho thành các bài toán con đơn giản hơn và giải chúng. Đây là cách cơ bản nhất để giải các bài toán đếm, có thể sẽ có cách khác ngắn gọn hơn, nhưng việc chia một bài toán thành các bài toán con mà chúng ta đã biết cách giải sẽ giúp ta ít gặp phải các sai lầm hơn.

Ví dụ 7. Có bao nhiêu số tự nhiên có ba chữ số được lấy từ tập \{1,2,3,4,5,6\} nếu

(a) Các chữ số không cần phải khác nhau?

(b) Các chữ số phải khác nhau?

(c) Các chữ số phải khác nhau và chứa số 3?

(d) Các chữ số không cần phải khác nhau và chứa số 3?

Lời giải.

(a) 6^3.

(b) 6\times 5\times 4.

(c) Đầu tiên ta chọn vị trí cho số 3, sau đó chọn hai số còn lại lần lượt. Đáp số là 3\times 5\times 4.

(d) Nếu tiếp tục làm như trên ta sẽ được kết quả là 3\times 6\times 6, đây là một kết quả không chính xác! Vì làm như vậy những số như 323 sẽ được đếm hai lần. Vấn đề ở chỗ ta đã dùng sai quy tắc nhân, mỗi hai tổ hợp khác nhau cách thực hiện các công việc E_i phải cho hai kết quả khác nhau thì ta mới áp dụng được quy tắc nhân. Bài này ta lại phải chia thành các bài toán con và giải chúng lần lượt.

Ta chia trường hợp theo vị trí của số 3 nằm bên trái nhất. Nếu số 3 này nằm ở vị trí hàng trăm thì số có ba chữ số phải có dạng \overline{3ab}, nếu nó nằm ở vị trí hàng chục thì số có ba chữ số phải có dạng \overline{a3b} với a\not=3, và cuối cùng, nếu số 3 này nằm ở vị trí hàng đơn vị thì số ba chữ số phải có dạng \overline{ab3} với a,b\not=3. Giải các bài toán con ta được đáp số của bài toán là 6\times 6+5\times 6+5\times 5. \Box

Continue reading “Basic counting principles”

Làm thế nào để cải thiện trực giác Toán học?


Trực giác Toán học có thể được hiểu là khả năng nhận ra các mẫu hình, mối liên hệ, hoặc cách tiếp cận một bài toán mà không cần dựa hoàn toàn vào các bước suy luận logic chi tiết. Trực giác này giống như một “cảm giác” về Toán học, cho phép người học dự đoán, hình dung, và đưa ra giả thuyết một cách tự nhiên. Trực giác Toán học không phải là một “phép màu” hay sự đoán mò. Nó được xây dựng dựa trên kinh nghiệm, sự quen thuộc với các khái niệm Toán học, và khả năng liên kết các ý tưởng. Nhà Toán học nổi tiếng Henri Poincaré từng mô tả trực giác như một công cụ giúp ông khám phá các ý tưởng mới, nhưng chỉ khi kết hợp với tư duy logic thì trực giác mới trở thành nền tảng cho những khám phá lớn.

Để cải thiện trực giác Toán học, bạn cần rèn luyện khả năng nhận diện các cấu hình, hiểu sâu các khái niệm và áp dụng chúng một cách linh hoạt. Dưới đây là một số kinh nghiệm hữu ích:

1. Thay vì chỉ học thuộc khái niệm hay định lý, hãy tìm hiểu tại sao chúng hoạt động. Đọc các chứng minh khác nhau khi học định lý, cố gắng nắm rõ ý tưởng chứng minh. Ngoài ra, có thể tự hỏi: Khái niệm này đến từ đâu? Ý nghĩa của kết quả này là gì? Nếu thay đổi hay bỏ bớt điều kiện, kết quả sẽ ra sao? Nó còn đúng không? Việc tìm câu trả lời sẽ kích thích tư duy trực giác và khả năng liên kết.

2. Giải nhiều bài toán ở các mức độ khác nhau, kể cả các bài toán mở. Các bài toán hình học, đại số, hay tổ hợp thường giúp phát triển trực giác nhờ tính trực quan. Những bài toán mở khuyến khích bạn suy nghĩ sáng tạo và hình dung cách giải quyết vấn đề.

3. Vẽ hình, biểu đồ, hoặc sơ đồ để minh họa bài toán. Chúng giúp bạn “thấy” được các mối liên hệ. Sử dụng các công cụ như GeoGebra hoặc giấy và bút để thử nghiệm các ý tưởng.

4. Thử giải bài toán theo nhiều cách khác nhau. Ví dụ, một bài toán hình học có thể được giải bằng đại số, lượng giác, hoặc hình học thuần túy. Điều này giúp bạn phát triển sự linh hoạt và nhận ra các mẫu ẩn. Khi gặp bài toán khó, hãy cố gắng chia nhỏ hoặc giải các bài toán đơn giản hơn.

5. Khi giải sai hay không giải được một bài toán, hãy dừng lại và phân tích lý do. Hỏi bản thân: “Mình đã bỏ qua điều gì?” hoặc “Có tính chất nào mình chưa nhận ra không?” Đây là cơ hội để phát triển trực giác, vì chúng chỉ ra những điểm mù trong tư duy.

6. Đọc và học từ các nguồn chất lượng. Đọc sách, xem video bài giảng hoặc bài viết của các nhà Toán học nổi tiếng để hiểu cách họ tiếp cận vấn đề. Các cuốn sách như “How to Solve It” của George Polya hoặc “The Art and Craft of Problem Solving” của Paul Zeitz rất hữu ích.

7. Hãy học hỏi từ những người khác ngoài thầy trực tiếp dạy bạn. Tham gia các nhóm học Toán hoặc diễn đàn như Art of Problem Solving. Thảo luận với người khác giúp tiếp cận các cách suy nghĩ mới và củng cố trực giác của mình. Dạy lại khái niệm cho người khác. Khi bạn giải thích một ý tưởng Toán học, bạn buộc phải hiểu nó sâu hơn, từ đó cải thiện trực giác.

Trực giác Toán học cần phải được rèn luyện thường xuyên, bạn nên dành thời gian mỗi ngày để giải một bài toán nhỏ hoặc suy nghĩ về một khái niệm mới. Trực giác Toán học không phát triển ngay lập tức, nó đòi hỏi thời gian và sự kiên trì. Hãy coi mỗi bài toán là một cơ hội để học hỏi, ngay cả khi bạn chưa tìm ra lời giải.