IMO2021/6


Trong bài này tôi giới thiệu hai lời giải cho bài 6 trong đề thi IMO 2021, lời giải thứ hai có dùng bổ đề Siegel mà tôi đã giới thiệu cách đây rất lâu ở đường dẫn https://nttuan.org/2007/10/21/siegel/. Các bạn có thể tìm các bài toán khác trong đề IMO 2021 ở đây https://nttuan.org/2021/07/25/imo2021/

Bài toán (IMO2021/6). Cho số nguyên m\ge 2, A là một tập hữu hạn các số nguyên và B_1, B_2, …,B_m là các tập con của A. Giả sử rằng với mỗi k=1,2,...,m, tổng các phần tử của B_km^k. Chứng minh rằng A có ít nhất \frac{m}{2} phần tử.

Lời giải 1. Đặt k=|A| và giả sử A = \{a_1,a_2,\ldots,a_k\}. Từ giả thiết, với mỗi i\in [m], ta có \displaystyle m^i = \sum_{j=1}^{k}b_{i,j}a_{j}\quad (1) với các b_{i,j} \in \{0;1\}. Với mỗi 0 \le x \le m^{m}-1, biểu diễn mx theo cơ số m và kết hợp với (1) ta được \displaystyle mx = \sum_{j=1}^{k}c_{j}a_{j}, trong đó các c_j là số nguyên thỏa mãn 0 \le c_j \le (m-1)m,\quad\forall j\in [k]. Vế trái của đẳng thức này nhận đúng m^{m} giá trị, do đó \displaystyle m^{m} \le [m(m-1)+1]^{k} < m^{2k}, suy ra |A|=k>m/2. \Box

Continue reading “IMO2021/6”

The number of prime factors of a natural number


Mỗi năm, khi được mời dạy cho đội tuyển Việt Nam tham dự Olympic Toán quốc tế (IMO), tôi thường mang đến cho các em vài bài toán rất khó, và hy vọng một lời giải thanh nhã từ các thành viên của đội tuyển. Dưới đây là một bài cho đội tuyển IMO năm 2021.

Bài toán. Với mỗi số nguyên dương n, gọi \omega (n) là số ước nguyên tố của n. Chứng minh rằng tồn tại số nguyên dương n sao cho \omega (n+1)<\omega (n+2)<\ldots <\omega (n+100).

Lời giải. Với hai hàm f(x)g(x) từ tập các số nguyên dương đến tập các số thực dương ta viết f=o(g) nếu f/g\to 0 khi x\to\infty. Thay 100 bởi k > 2. Gọi A là một số nguyên dương phụ thuộc k mà ta sẽ chọn sau. Giả sử  q_1<q_2<\cdots<q_m<\cdots là dãy tất cả các số nguyên tố lớn hơn k. Với j=1, \ldots, k, đặt T_j= j(j-1) / 2\displaystyle M_j=\prod_{\ell=T_j A+1}^{T_{j+1} A} q_{\ell}. Đặt \displaystyle M=\prod_{j=1}^k M_j và gọi N là số nguyên dương nhỏ nhất sao cho M_j chia hết N+j với mỗi j\in [k]. Ta có ngay N+k<M. Thật vậy, nếu không thì N=M-i với i \in [k], lấy j \in [k]\setminus \{i\}, ta có M_j \mid N+j=M+(j-i); suy ra M_j \mid j-i, vô lý.

Xét số n=M \lambda+N, ở đây \lambda là số nguyên dương mà \lambda \in[M, 2 M]. Ta có

\displaystyle n+j=M \lambda+(N+j)=M_j\left(\left(M / M_j\right) \lambda+(N+j) / M_j\right), \quad j=1, \ldots, k .

Khi đặt A_j=(N+j) / M_jB_j=M / M_j, ta có

\displaystyle j A=T_{j+1} A-T_j A=\omega\left(M_j\right) \leq \omega(n+j) \leq j A+\omega\left(B_j \lambda+A_j\right),

suy ra nếu \lambda thỏa mãn \displaystyle \omega\left(B_j \lambda+A_j\right)<A, \quad \forall j=1, \ldots, k-1,\quad (1) thì

\displaystyle jA \leq\omega(n+j)<j A+A \leq \omega(n+j+1), \quad\forall  j=1, \ldots, k-1,

và bài toán được giải. Vậy sẽ là đủ nếu ta chỉ ra có A để tồn tại \lambda thỏa mãn (1).

Với mỗi j<k, ta có (A_j,B_j)=1. Thật vậy, xét một chỉ số j<k. Ta có

\displaystyle B_j=M / M_j=\prod_{\substack{1 \leq \ell \leq k \\ \ell \neq j}} M_{\ell}.

Nếu có số nguyên tố p \mid\left(A_j, B_j\right), tồn tại chỉ số \ell \neq j sao cho p \mid M_{\ell}. Vì M_{\ell} \mid N+\ell nên p \mid N+\ell. Nhưng p\left|A_j\right| N+j; suy ra p \mid(N+\ell)-(N+j)=(\ell-j), và 1 \leq|\ell-j|<k. Do đó p<k, điều này không thể xảy ra do mọi ước nguyên tố của M lớn hơn k.

Bổ đề. Với mỗi số nguyên dương x, ký hiệu \tau (x) là số ước dương của x. Khi đó

\displaystyle \sum_{\lambda \in[M, 2 M]} \tau\left(B_j \lambda+A_j\right)\leq 4 M(\ln M+1),\quad\forall j<k.

Chứng minh. Xét một chỉ số j<k. Vì N+k <M nên với mỗi số nguyên \lambda\in [M,2M], ta có

\displaystyle B_j \lambda+A_j \leq \frac{1}{M_j}(M \lambda+N+k)<\frac{2 M \lambda}{M_j} \leq \frac{4 M^2}{M_j}<M^2,

suy ra

\displaystyle \tau\left(B_j \lambda+A_j\right) \leq 2 \sum_{\substack{d \mid B_j \lambda+A_j \\ d \leq M}} 1.

Do đó

\displaystyle \sum_{\lambda \in[M, 2 M]} \tau\left(B_j \lambda+A_j\right)

\displaystyle \leq 2 \sum_{\lambda \in[M, 2 M]} \sum_{\substack{d \mid B_j \lambda+A_j \\ d \leq M}} 1 = 2 \sum_{d \leq M} \sum_{\substack{\lambda \in[M, 2 M] \\ B_j \lambda+A_j \equiv 0 \\ (\bmod d)}} 1

\leq 2 \sum_{d \leq M}\left(\left\lfloor\left.\frac{M}{d} \right\rvert\,+1\right) \leq 4 M \sum_{d \leq M} \frac{1}{d}\right. \leq 4 M(\ln M+1) . \Box

Continue reading “The number of prime factors of a natural number”

Làm thế nào để cải thiện trực giác Toán học?


Trực giác Toán học có thể được hiểu là khả năng nhận ra các mẫu hình, mối liên hệ, hoặc cách tiếp cận một bài toán mà không cần dựa hoàn toàn vào các bước suy luận logic chi tiết. Trực giác này giống như một “cảm giác” về Toán học, cho phép người học dự đoán, hình dung, và đưa ra giả thuyết một cách tự nhiên. Trực giác Toán học không phải là một “phép màu” hay sự đoán mò. Nó được xây dựng dựa trên kinh nghiệm, sự quen thuộc với các khái niệm Toán học, và khả năng liên kết các ý tưởng. Nhà Toán học nổi tiếng Henri Poincaré từng mô tả trực giác như một công cụ giúp ông khám phá các ý tưởng mới, nhưng chỉ khi kết hợp với tư duy logic thì trực giác mới trở thành nền tảng cho những khám phá lớn.

Để cải thiện trực giác Toán học, bạn cần rèn luyện khả năng nhận diện các cấu hình, hiểu sâu các khái niệm và áp dụng chúng một cách linh hoạt. Dưới đây là một số kinh nghiệm hữu ích:

1. Thay vì chỉ học thuộc khái niệm hay định lý, hãy tìm hiểu tại sao chúng hoạt động. Đọc các chứng minh khác nhau khi học định lý, cố gắng nắm rõ ý tưởng chứng minh. Ngoài ra, có thể tự hỏi: Khái niệm này đến từ đâu? Ý nghĩa của kết quả này là gì? Nếu thay đổi hay bỏ bớt điều kiện, kết quả sẽ ra sao? Nó còn đúng không? Việc tìm câu trả lời sẽ kích thích tư duy trực giác và khả năng liên kết.

2. Giải nhiều bài toán ở các mức độ khác nhau, kể cả các bài toán mở. Các bài toán hình học, đại số, hay tổ hợp thường giúp phát triển trực giác nhờ tính trực quan. Những bài toán mở khuyến khích bạn suy nghĩ sáng tạo và hình dung cách giải quyết vấn đề.

3. Vẽ hình, biểu đồ, hoặc sơ đồ để minh họa bài toán. Chúng giúp bạn “thấy” được các mối liên hệ. Sử dụng các công cụ như GeoGebra hoặc giấy và bút để thử nghiệm các ý tưởng.

4. Thử giải bài toán theo nhiều cách khác nhau. Ví dụ, một bài toán hình học có thể được giải bằng đại số, lượng giác, hoặc hình học thuần túy. Điều này giúp bạn phát triển sự linh hoạt và nhận ra các mẫu ẩn. Khi gặp bài toán khó, hãy cố gắng chia nhỏ hoặc giải các bài toán đơn giản hơn.

5. Khi giải sai hay không giải được một bài toán, hãy dừng lại và phân tích lý do. Hỏi bản thân: “Mình đã bỏ qua điều gì?” hoặc “Có tính chất nào mình chưa nhận ra không?” Đây là cơ hội để phát triển trực giác, vì chúng chỉ ra những điểm mù trong tư duy.

6. Đọc và học từ các nguồn chất lượng. Đọc sách, xem video bài giảng hoặc bài viết của các nhà Toán học nổi tiếng để hiểu cách họ tiếp cận vấn đề. Các cuốn sách như “How to Solve It” của George Polya hoặc “The Art and Craft of Problem Solving” của Paul Zeitz rất hữu ích.

7. Hãy học hỏi từ những người khác ngoài thầy trực tiếp dạy bạn. Tham gia các nhóm học Toán hoặc diễn đàn như Art of Problem Solving. Thảo luận với người khác giúp tiếp cận các cách suy nghĩ mới và củng cố trực giác của mình. Dạy lại khái niệm cho người khác. Khi bạn giải thích một ý tưởng Toán học, bạn buộc phải hiểu nó sâu hơn, từ đó cải thiện trực giác.

Trực giác Toán học cần phải được rèn luyện thường xuyên, bạn nên dành thời gian mỗi ngày để giải một bài toán nhỏ hoặc suy nghĩ về một khái niệm mới. Trực giác Toán học không phát triển ngay lập tức, nó đòi hỏi thời gian và sự kiên trì. Hãy coi mỗi bài toán là một cơ hội để học hỏi, ngay cả khi bạn chưa tìm ra lời giải.

Perfect rulers


Giả sử ta có một cái thước kẻ dài \displaystyle 6, trên đó đã đánh dấu các điểm \displaystyle 0, \displaystyle 1, \displaystyle 2, \displaystyle 3, \displaystyle 4, \displaystyle 5, \displaystyle 6. Sử dụng chiếc thước này ta có thể tạo mọi đoạn có độ dài thuộc \displaystyle [6], nhưng ta không cần đánh dấu trên thước nhiều điểm như thế để đạt được điều này. Ta có thể đánh dấu \displaystyle 0, \displaystyle 1, \displaystyle 4, 6 là đủ (đoạn độ dài 2 được đo giữa hai điểm 46, đoạn độ dài 3 được đo giữa 14, đoạn độ dài 4 được đo giữa 04, đoạn độ dài 5 được đo giữa 16). Vì C_4^2=6 nên hoàn cảnh này là hoàn hảo.

Bài toán. Cho một số nguyên n lớn hơn 4. Chứng minh rằng không tồn tại n số tự nhiên phân biệt a_1, a_2, \ldots, a_n sao cho mọi số nguyên dương không vượt quá C_n^2 đều có dạng a_i-a_j.

Lời giải. Giả sử ngược lại, tồn tại n số tự nhiên phân biệt a_1, a_2, \ldots, a_n sao cho mọi số nguyên dương không vượt quá C_n^2 đều có dạng a_i-a_j.

Xét đa thức \displaystyle A(z) = \sum_i z^{a_i}. Theo tính chất của các số a_1, a_2, \ldots, a_n, ta có

\displaystyle A(z) \cdot A\left(\frac{1}{z}\right)=\sum_{k=-C_n^2}^{C_n^2} z^k+n-1,\quad \forall z\in\mathbb{C}\setminus \{0\}.

Continue reading “Perfect rulers”