The fundamental theorem of arithmetic


Trong bài này chúng ta sẽ nói một ít về số nguyên tố, trình bày chứng minh định lí cơ bản của số học, và giới thiệu một số kết quả sơ cấp về số nguyên tố. Đây cũng là bài đọc cho các học sinh lớp 9 và các học sinh ôn thi chọn HSG QG tại T’s Lab. Để theo dõi cho dễ dàng bạn đọc nên xem lại bài viết sau:

[1] https://nttuan.org/2023/07/14/divisibility/


Một số nguyên tố là một số nguyên n lớn hơn 1 có đúng hai ước dương là 1n. Một số nguyên lớn hơn 1 được gọi là hợp số nếu nó không phải là số nguyên tố. Các số 2,3,5 là các số nguyên tố. Các số 4,15,18 là các hợp số.

Định lí 1. Mỗi số nguyên lớn hơn 1 có thể biểu diễn như là tích của các số nguyên tố.
Chứng minh. Giả sử n là một số nguyên lớn hơn 1. Nếu n là số nguyên tố thì nó là tích với một thừa số nguyên tố. Nếu không thì n=n_1 n_2, trong đó n_1n_2 là các số nguyên lớn hơn 1 và bé hơn n. Nếu n_1 là một số nguyên tố, ta không làm gì; nếu không thì viết n_1 thành tích của hai số nguyên lớn hơn 1 và bé hơn n_1; thao tác tương tự với n_2. Tiếp tục thao tác như thế trên các thừa số mới. Quá trình này phải dừng vì không có dãy giảm nghiêm ngặt gồm vô hạn số nguyên dương, khi đó ta có một cách biểu diễn n như là tích của các số nguyên tố. \Box

Từ dịnh lí trên, vì các thừa số nguyên tố không nhất thiết phải phân biệt nên mọi số nguyên n lớn hơn 1 có thể viết được dưới dạng n=p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r},
trong đó p_1, p_2, \cdots, p_r là các số nguyên tố phân biệt và \alpha_1, \alpha_2, \cdots, \alpha_r là các số nguyên dương. Biểu diễn này được gọi là phân tích chính tắc của n thành các lũy thừa nguyên tố. Ta sẽ chứng minh rằng biểu diễn này là duy nhất theo nghĩa: đối với mỗi n, bất kỳ biểu diễn nào khác chỉ là sự sắp xếp lại các thừa số.

Continue reading “The fundamental theorem of arithmetic”

Popoviciu’s theorem


Trong  bài này chúng tôi sẽ giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên.

Định lí. (Công thức Popoviciu)  Gọi N(a,b;n) là số các cặp số tự nhiên (x,y) sao cho ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên. Khi đó

\displaystyle N(a,b;n)=\frac{n}{ab}-\left\{\frac{a^{-1}n}{b}\right\}-\left\{\frac{b^{-1}n}{a}\right\}+1, với a^{-1} là nghịch đảo modulo b của ab^{-1} là nghịch đảo modulo a của b.

Chứng minh. Gọi \displaystyle F(z)=\sum_{n=0}^{+\infty}N(a,b;n)z^n là hàm sinh của dãy số \{N(a,b;n)\}_{n\geq 0}. Ta có

\displaystyle F(z)=\sum_{k\in\mathbb{N}}\sum_{l\in\mathbb{N}}z^{ak}z^{bl}=\frac{1}{(1-z^a)(1-z^b)}.\quad (1)

(a,b)=1 nên đa thức (1-z^a)(1-z^b) có nghiệm là 1 với bội 2 và các nghiệm đơn \xi_a^k (k=1,2,\ldots,a-1), \xi_b^l (l=1,2,\ldots,b-1), ở đây \xi_a=\cos\dfrac{2\pi}{a}+i\sin \dfrac{2\pi}{a}\xi_b=\cos\dfrac{2\pi}{b}+i\sin \dfrac{2\pi}{b}. Kết hợp với (1) ta có tồn tại các số phức C_1,C_2; A_i; B_i sao cho

\displaystyle F(z)=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (2)

Để ý đến hệ số của z^n, từ (2) ta có

\displaystyle N(a,b;n)=C_1+C_2(n+1)+\sum_{k=1}^{a-1}A_k\xi_a^{-nk}+\sum_{l=1}^{b-1}B_l\xi_b^{-nl}.\quad (3)

Bây giờ ta sẽ đi tìm các số phức C_1,C_2; A_i; B_i từ đẳng thức

\displaystyle \frac{1}{(1-z^a)(1-z^b)}=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (4)

Nhân hai vế của (4) với (1-z)^2 và cho z\to 1 ta có C_2=\dfrac{1}{ab}, sau đó nhân hai vế của (4) với 1-z, để C_1 một bên và cho z\to 1 ta được C_1=\dfrac{a+b-2}{2ab}. Theo cùng một cách ta có

\displaystyle A_k=\frac{1}{a(1-\xi_a^{kb})},\quad B_l=\frac{1}{b(1-\xi_b^{la})}.

Thay vào (3) ta được

\displaystyle N(a,b;n)=\frac{n}{ab}+\frac{a+b}{2ab}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}+\frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}.\quad (5)

Từ (5) ta có \displaystyle N(a,1;n)=\frac{n}{a}+\frac{a+1}{2a}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}, mà \displaystyle N(a,1;n)=\left[\frac{n}{a}\right]+1, suy ra

\displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{n}{a}\right\}-\frac{1}{2a},

do đó \displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}=\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nb^{-1}k}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{nb^{-1}}{a}\right\}-\frac{1}{2a},

chứng minh tương tự ta được

\displaystyle \frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}=\frac{1}{2}-\left\{\frac{na^{-1}}{b}\right\}-\frac{1}{2b},

thay hai đẳng thức cuối cùng vào (5) ta có điều cần chứng minh. \Box

A proof of Cauchy–Davenport theorem


Trong bài này tôi sẽ giới thiệu một chứng minh của định lí Cauchy-Davenport.

Định lí Cauchy – Davenport. Cho số nguyên tố p và hai tập con khác rỗng A,B của \mathbb{Z}/p\mathbb{Z}. Khi đó

|A+B|\geq\min (p,|A|+|B|-1).

Chứng minh. Ta chứng minh khẳng định bằng quy nạp theo |B|. Khi |B|=1 ta có

|A+B|=|A|=\min (p,|A|)=\min (p,|A|+|B|-1). Suy ra khẳng định đúng khi |B|=1. Khi |B|=2 ta viết B=\{b_1,b_2\}A=\{a_1,a_2,\ldots,a_m\}, ta có ngay |A+B|\geq m.

Nếu |A+B|= m thì \{b_1+a_1,\ldots,b_1+a_m\}=\{b_2+a_1,\ldots,b_2+a_m\}, suy ra mb_1\equiv mb_2\pmod{p}, hay m=p. Khi đó |A+B|=p\geq\min (p,|A|+|B|-1).

Nếu |A+B|>m thì |A+B|\geq m+1\geq\min (p,m+1)=\min (p,|A|+|B|-1).

Vậy khẳng định đúng khi |B|=2. Giả sử khẳng định đúng với mỗi tập B thỏa mãn |B|<n, trong đó n\geq 3. Ta sẽ chứng minh khẳng định đúng với mọi tập B|B|=n. Xét một tập B thỏa mãn |B|=n. Đặt |A+B|=l,|A|=m và viết B=\{b_1,b_2,\ldots,b_n\}. Xét ba trường hợp

Trường hợp 1. l\geq p.

Ta có |A+B|=l\geq p\geq\min (p,|A|+|B|-1).

Trường hợp 2. m+n>p.

Ta có A+B=\{0,1,2,\ldots,p-1\}, thật vậy với mỗi g\in \{0,1,2,\ldots,p-1\}, hai tập g-AB có giao khác rỗng vì chúng là các tập con của tập \{0,1,2,\ldots,p-1\} và có tổng số phần tử lớn hơn p. Lấy h\in g-A\cap B ta có ngay g=b=g-a\,\, (a\in A,b\in B), suy ra g=a+b\in A+B. Từ đây ta có |A+B|=p\geq\min (p,|A|+|B|-1).

Trường hợp 3. l<pm+n\leq p.

Ở trường hợp này thì \min (p,|A|+|B|-1)=\min (p,m+n-1)=m+n-1. Áp dụng giả thiết quy nạp cho hai tập C=A+B\{b_1,b_n\} ta có |C+\{b_1,b_n\}|\geq\min (p,|C|+|\{b_1,b_n\}|-1)=\min (p,l+1)=l+1, suy ra C+b_1\not = C+b_n, do đó tồn tại số nguyên x sao cho x-b_1\in A+Bx-b_n\not\in A+B. Từ đây ta thấy tồn tại số nguyên dương r<n sao cho x-b_i\in A+B,\,\forall i=\overline{1,r}x-b_i\not\in A+B,\,\forall i=\overline{r+1,n}. Áp dụng giả thiết quy nạp cho hai tập AB^{\prime}=\{b_{r+1},b_{r+2},\ldots,b_n\} ta có

|A+B^{\prime}|\geq \min (p,|A|+|B^{\prime}|-1)=\min (p,m+n-r-1)=m+n-r-1. Ta có x-b_i\not\in A+B^{\prime},\,\forall i=\overline{1,r}, vì nếu chẳng hạn x-b_1\in A+B^{\prime} thì

x-b_1= a+b_{s}\Rightarrow x-b_s\in A+B, điều này trái với cách chọn r. Vậy |A+B|\geq r+|A+B^{\prime}|\geq r+m+n-r-1=m+n-1, và định lí được chứng minh. \Box

Bằng quy nạp ta chứng minh được kết quả sau.

Hệ quả. Cho số nguyên dương h>1, số nguyên tố ph tập con khác rỗng A_1, A_2,\ldots, A_h của \mathbb{Z}/p\mathbb{Z}. Khi đó \displaystyle \mid A_1+A_2+\cdots+A_h\mid \geq \min \left(p,\sum_{i=1}^h\mid A_i\mid-h+1\right).

Combinatorial Nullstellensatz


Trong bài này chúng tôi giới thiệu một chứng minh ngắn của định lý không điểm tổ hợp của Noga Alon, và sử dụng nó chứng minh định lý Cauchy – Davenport (xem [1]). Từ bây giờ, khi nói đến trường thì các bạn hiểu là nói đến \displaystyle \mathbb{C}, \displaystyle \mathbb{R}, \displaystyle \mathbb{Q}, hay \displaystyle \mathbb{Z}/p\mathbb{Z}.

Định lý 1 (N. Alon, 1999). Cho \displaystyle \mathbb{F} là một trường bất kỳ, và cho \displaystyle P\left(x_{1}, \ldots, x_{n}\right) là một đa thức trong \displaystyle \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]. Giả sử bậc của \displaystyle P\displaystyle \sum_{i=1}^{n} k_{i}, trong đó \displaystyle k_{i} là một số nguyên không âm, và hệ số của đơn thức \displaystyle x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}} trong \displaystyle P khác không. Khi đó với mỗi tập con \displaystyle A_{1}, \ldots, A_{n} của \displaystyle \mathbb{F} thỏa mãn \displaystyle \left|A_{i}\right| \geq k_{i}+1 với mỗi \displaystyle i=1,2, \ldots, n, tồn tại \displaystyle a_{1} \in A_{1}, \ldots, a_{n} \in A_{n} để \displaystyle P\left(a_{1}, \ldots, a_{n}\right) \neq 0.

Định lý trên được gọi là định lý không điểm tổ hợp, nó là một tổng quát của kết quả: Với mỗi đa thức khác không \displaystyle f(x) với hệ số thuộc một trường \displaystyle \mathbb F, số nghiệm của \displaystyle f trong \displaystyle \mathbb F không vượt quá \displaystyle \deg f.

Chứng minh (Mateusz Michalek). Khẳng định là đúng một cách hiển nhiên khi \displaystyle P là đa thức hằng, bây giờ ta xét trường hợp còn lại.

Quy nạp theo \displaystyle \deg P. Nếu \displaystyle \deg(P)=1 thì định lý là đúng. Giả sử \displaystyle \deg(P)>1\displaystyle P thỏa mãn các giả thiết của định lý nhưng kết luận là sai. Nghĩa là \displaystyle P(x)=0 với mọi \displaystyle x \in A_{1} \times \ldots \times A_{n}. Không mất tính tổng quát, giả sử \displaystyle k_{1}>0. Xét một \displaystyle a \in A_{1} và viết

\displaystyle P=\left(x_{1}-a\right) Q+R\quad \quad (1)

bằng cách sử dụng thuật toán chia. Xem (1) là một đẳng thức của các đa thức một biến \displaystyle x_{1} với hệ số thuộc \displaystyle \mathbb{F}\left[x_{2}, \ldots, x_{n}\right]. Vì bậc của \displaystyle R theo biến \displaystyle x_{1} là bé hơn \displaystyle \deg\left(x_{1}-a\right), đa thức \displaystyle R không chứa \displaystyle x_{1}. Từ giả thiết về \displaystyle P ta có \displaystyle Q phải có một đơn thức không bị triệt tiêu có dạng \displaystyle x_{1}^{k_{1}-1} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}

\displaystyle \deg(Q)=\sum_{i=1}^{n} k_{i}-1=\deg(P)-1.   

Lấy mỗi \displaystyle x \in\{a\} \times A_{2} \times \ldots \times A_{n} và thay vào (1). Vì \displaystyle P(x)=0 ta có \displaystyle R(x)=0. Nhưng \displaystyle R không chứa \displaystyle x_{1}, suy ra \displaystyle R cũng bằng không trên \displaystyle \left(A_{1}-\{a\}\right) \times A_{2} \times \ldots \times A_{n}.

Bây giờ thay mỗi \displaystyle x \in\left(A_{1}-\{a\}\right) \times A_{2} \times \ldots \times A_{n} vào (1). Vì \displaystyle x_{1}-a khác không, ta có \displaystyle Q(x)=0. Vậy là \displaystyle Q bằng không trên \displaystyle \left(A_{1}-\{a\}\right) \times A_{2} \times \ldots \times A_{n}, trái với giả thiết quy nạp. \Box

Một áp dụng đầu tiên là chứng minh ngắn của định lý Cauchy – Davenport trong lý thuyết số cộng tính. Định lý được chứng minh đầu tiên bởi Cauchy vào năm 1813 và bởi Davenport vào năm 1935. Cho \displaystyle A\displaystyle B là hai tập con khác rỗng của \displaystyle \mathbb{Z}/{p}\mathbb{Z} với \displaystyle \mid A\mid =a\displaystyle \mid B\mid =b. Hỏi tập

\displaystyle A+B:=\{a+b\mid (a,b)\in A\times B\}

có thể có ít nhất bao nhiêu phần tử?

Định lý 2 (Cauchy – Davenport). Cho số nguyên tố \displaystyle p và cho \displaystyle A\displaystyle B là hai tập con khác rỗng của \displaystyle \mathbb{Z}/{p}\mathbb{Z} với \displaystyle \mid A\mid =a\displaystyle \mid B\mid =b. Khi đó

\displaystyle |A+B|\geq\min \{p,a+b-1\}.

Chứng minh. Nếu \displaystyle a+b>p thì \displaystyle \mid A+B\mid =p. Thật vậy, với mỗi \displaystyle g\in \mathbb{Z}/{p}\mathbb{Z}, hai tập \displaystyle g-A\displaystyle B có giao khác rỗng vì \displaystyle a+b>p. Lấy \displaystyle h\in (g-A)\cap B ta có ngay \displaystyle h=b=g-a\quad (a\in A,b\in B), suy ra \displaystyle g=a+b\in A+B. Từ đây ta có \displaystyle |A+B|=p=\min \{p,a+b-1\}.

Bây giờ ta xét \displaystyle a+b\leq p và giả sử bất đẳng thức là sai. Gọi \displaystyle C là một tập có cỡ \displaystyle a+b-2 trong \displaystyle \mathbb{Z}/{p}\mathbb{Z} chứa \displaystyle A+B. Xét đa thức

\displaystyle f(x, y)=\prod_{c \in C}(x+y-c)

trên \displaystyle \mathbb{Z}/{p}\mathbb{Z}. Đây là một đa thức hai biến có bậc \displaystyle a+b-2. Ta sẽ chứng minh

\displaystyle \left[x^{a-1} y^{b-1}\right] f(x, y)=\left(\begin{array}{c}a+b-2 \\ a-1\end{array}\right) \not =0.

Để hình thành hệ số này khi khai triển \displaystyle f, ta chọn \displaystyle x đúng \displaystyle a-1 lần và \displaystyle y đúng \displaystyle b-1 lần trong \displaystyle a+b-2 thừa số. Như vậy ta có đẳng thức đầu. Hệ số nhị thức khác không là vì \displaystyle a+b-2<p\displaystyle p là số nguyên tố.

\displaystyle |A|=a\displaystyle |B|=b, định lý không điểm tổ hợp cho ta \displaystyle x \in A\displaystyle y \in B\displaystyle f(x, y) \neq 0. Điều này không thể xảy ra vì \displaystyle f đã được dựng để triệt tiêu trên mọi cặp \displaystyle (x, y) như vậy. \Box

Bài đọc thêm

[1] https://nttuan.org/2014/09/29/cauchy-davenport/