Algebraic number


Các em học sinh hãy chứng minh các khẳng định trong bài ngắn dưới đây. Tài liệu tham khảo là

[1] https://nttuan.org/2018/08/25/poly03/

[2] https://nttuan.org/2009/01/11/poly02/

[3] https://nttuan.org/2021/04/30/sqrt/


Một số phức \alpha được gọi là một số đại số nếu có đa thức f(x) khác đa thức không có hệ số trong \mathbb{Q} nhận \alpha làm nghiệm. Một số đại số được gọi là số nguyên đại số nếu nó là nghiệm của một đa thức có hệ số nguyên với hệ số cao nhất bằng 1.

\sqrt[3]{2}i là các số đại số. Số \frac{1}{2} là một số đại số nhưng không phải số nguyên đại số. Những số phức không phải là số đại số sẽ được gọi là các số siêu việt. Người ta chứng minh được e\pi là các số siêu việt.

Cho một số đại số \alpha. Đa thức tối tiểu của \alpha là đa thức khác không f(x)\in\mathbb{Q}[x] có bậc nhỏ nhất thỏa mãn

  • hệ số cao nhất của f bằng 1, và
  •  \alpha là một nghiệm của f.

Định lí 1. Đa thức tối tiểu là tồn tại và duy nhất với mỗi số đại số.

Định lí 2. Cho số đại số \alpha. Khi đó

  • Đa thức tối tiểu của \alpha là bất khả quy trên \mathbb{Q}.
  •  Nếu g\in\mathbb{Q}[x] thì \alpha là nghiệm của g khi và chỉ khi g chia hết cho đa thức tối tiểu của \alpha.
  •  Nếu đa thức tối tiểu của \alpha có bậc n thì với mỗi đa thức f với hệ số hữu tỷ, tồn tại đa thức g có bậc bé hơn n với hệ số hữu tỷ sao cho f(\alpha)=g(\alpha).

Bài 1. Chứng minh rằng \sqrt{2}+\sqrt{3} là một số đại số và tìm đa thức tối tiểu của nó.

Bài 2. Cho p(x) là một đa thức với hệ số nguyên thỏa mãn p(\sqrt{2}+\sqrt{3})=0. Chứng minh rằng p(\sqrt{2}-\sqrt{3})=0.

Định lí 3. Nếu \alpha\beta là các số đại số (nguyên đại số) thì \alpha\pm\beta\alpha\beta cũng là các số đại số (nguyên đại số). Nếu \alpha\not=0 là một số đại số thì 1/\alpha cũng là một số đại số.

Khẳng định thứ hai không đúng đối với các số nguyên đại số.

Bài 3. Số \sqrt {1001^2 + 1} + \sqrt {1002^2 + 1} + \cdots + \sqrt {2000^2 + 1} có phải là số hữu tỷ hay không?

Square roots are linearly independent


Trong bài này tôi giới thiệu nhiều lời giải cho bài toán quan trọng sau:

Bài toán. Cho a_1,\ldots,a_k là các số nguyên không đồng thời bằng 0. Chứng minh rằng nếu n_1, n_2,\ldots, n_k là các số nguyên dương đôi một khác nhau và không có ước chính phương lớn hơn 1 thì \sum a_i\sqrt{n_i}\not=0

Lời giải 1. Ta sẽ chứng minh bằng quy nạp theo N, số ước nguyên tố của \prod n_i, khẳng định: Tồn tại tổng S'=\sum b_i\sqrt{m_i} sao cho SS' là số nguyên khác 0, ở đây m_i là các số nguyên dương đôi một khác nhau và không có ước chính phương khác 1, tập các ước nguyên tố của \prod m_i là tập con của tập các ước nguyên tố của \prod n_i, b_i là các số nguyên, và S=\sum a_i\sqrt{n_i}. Từ đó suy ra S\not=0.

Với N=0 ta chọn S'=1.

Với N=1 ta chọn S'=\sqrt{p_1} khi S=a_1\sqrt{p_1}, chọn S'=-a_1\sqrt{p_1}+a_2 nếu S=a_1\sqrt{p_1}+a_2.

Continue reading “Square roots are linearly independent”