Viet Nam TST 2025/1


Trong bài này tôi sẽ giới thiệu một lời giải của bài 1 trong kỳ thi chọn đội IMO 2025 của Việt Nam.

VNTST2025/1. Tìm tất cả các hàm số f:\mathbb{Q}^+\to\mathbb{Q}^+ sao cho với mỗi số hữu tỷ dương xy, ta có

\displaystyle\frac{f(x)f(y)}{f(xy)}=\frac{(\sqrt{f(x)}+\sqrt{f(y)})^2}{f(x+y)}.

Lời giải. Trả lời: f(x)=4,\,\forall x\in \mathbb{Q}^+ hoặc f(x)=x^2,\,\forall x\in \mathbb{Q}^+. Kiểm tra ta thấy hai hàm số này thỏa mãn các yêu cầu của đề bài, sau đây ta chứng minh không còn hàm số nào khác.

Giả sử f:\mathbb{Q}^+\to\mathbb{Q}^+ là một hàm số thỏa mãn các yêu cầu của đề bài. Khi đó với mỗi số hữu tỷ dương xy,

\displaystyle\frac{f(x)f(y)}{f(xy)}=\frac{(\sqrt{f(x)}+\sqrt{f(y)})^2}{f(x+y)}.\quad\quad (1)

Gọi S là tập các số thực dương có dạng \sqrt{r}, trong đó r là một số hữu tỷ dương. Xét hàm số g:\mathbb{Q}^+\to S xác định bởi g(x)=\sqrt{f(x)} với mọi số hữu tỷ dương x. Từ (1) ta được

\displaystyle\frac{g(x)g(y)}{g(xy)}=\frac{g(x)+g(y)}{g(x+y)}

với mọi số hữu tỷ dương xy. (2)

Từ (2), với x=y=1 ta thu được g(2)=2. Cũng từ (2), với mỗi số hữu tỷ dương xy ta có (g(x)+g(y))^2 là một số hữu tỷ. Suy ra g(x)g(y) là một số hữu tỷ với mọi số hữu tỷ dương xy. Nói riêng, khi y=2 ta có g(x) là một số hữu tỷ dương với mọi số hữu tỷ dương x. Trong (2), chọn y=2x=3 ta có

\displaystyle\frac{2g(3)}{g(6)}=\frac{g(3)+2}{g(5)}.\quad (3)

Cũng từ (2), với y=1 ta có

\displaystyle g(x+1)=\frac{1}{g(1)}g(x)+1

với mọi số hữu tỷ dương x. (4)

Từ đây ta tính được cả ba số g(3), g(5)g(6) theo g(1). Thay lại (3) và chú ý g(1) là một số hữu tỷ dương ta có g(1)\in \{1;2\}. Đến đây ta xét từng trường hợp.

Trường hợp 1: g(1)=2.

Bằng quy nạp theo n, từ (4) ta có g(n)=2

\displaystyle g(x+n)=\frac{1}{2^n}g(x)+2-\frac{1}{2^{n-1}}

với mọi số nguyên dương n và số hữu tỷ dương x. (5)

Bây giờ xét một số hữu tỷ dương r. Tồn tại vô hạn số nguyên dương n sao cho rn là một số nguyên dương. Với các số n này, từ (2) ta có

\displaystyle g(r)=\frac{g(r)+2}{g(r+n)}.

Như vậy g(r+n) không đổi, kết hợp với (5) ta có g(r)=2. Suy ra g(x)=2 với mọi số hữu tỷ dương x.

Trường hợp 2: g(1)=1.

Bằng quy nạp theo n, từ (4) ta có g(n)=n

g(x+n)=g(x)+n với mọi số nguyên dương n và số hữu tỷ dương x. (6)

Bây giờ xét một số hữu tỷ dương r. Tồn tại số nguyên dương n sao cho rn là một số nguyên dương. Trong (2), chọn x=ry=n, đồng thời dùng (6) ta có g(r)=r. Suy ra g(x)=x với mọi số hữu tỷ dương x.

Như vậy f(x)=4,\,\forall x\in \mathbb{Q}^+ hoặc f(x)=x^2,\,\forall x\in \mathbb{Q}^+. \Box

VMO 2025/1


VMO 2025/1. Xét đa thức P(x)=x^4-x^3+x.
(1) Chứng minh rằng với mỗi số thực dương a, đa thức P(x)-a có duy nhất một nghiệm thực dương.
(2) Xét dãy số (a_n)_{n\geq 1} xác định bởi a_1=1/3 và với mỗi số nguyên dương n, a_{n+1} là nghiệm dương của đa thức P(x)-a_n. Chứng minh rằng dãy số này có giới hạn hữu hạn và tìm giới hạn đó.

Lời giải. Xét một số thực dương a và hàm số f:\mathbb{R}\to\mathbb{R} xác định bởi f(x)=P(x)-a,\quad\forall x\in\mathbb{R}. Hàm số f là một hàm số liên tục trên (0;+\infty)

\displaystyle \lim_{x\to 0^+} f(x)=-a<0,\quad\lim_{x\to+\infty}f(x)=+\infty,

từ đây theo định lý giá trị trung gian, phương trình f(x)=0 có ít nhất một nghiệm thực dương. Mặt khác, hàm số f đồng biến trên (0;+\infty)

\displaystyle f^{\prime}(x)=4x^3-3x^2+1=(2x-1)^2\left(x+\frac{1}{4}\right)+\frac{3}{4}>0

với mọi số thực dương x, suy ra phương trình f(x)=0 có đúng một nghiệm thực dương. Do đó phương trình P(x)-a=0 có đúng một nghiệm thực dương. Nghiệm này là nghiệm đơn của đa thức P(x)-a nên ta có ý thứ nhất.

Bây giờ ta đến với ý thứ hai. Từ giả thiết ta có

a_n-1=(a_{n+1}-1)(a_{n+1}^3+1),\quad\forall n\geq 1,

sử dụng phương pháp quy nạp ta chứng minh được tất cả các số hạng của dãy (a_n)_{n\geq 1} đều thuộc khoảng (0;1). Suy ra

a_{n+1}-a_n=a_{n+1}^3(1-a_{n+1})>0,\quad\forall n\geq 1,

do đó (a_n)_{n\geq 1} là một dãy số tăng. Dãy số này cũng bị chặn trên bởi 1 nên nó có giới hạn hữu hạn. Gọi L là giới hạn của dãy số (a_n)_{n\geq 1}. Vì (a_n)_{n\geq 1} tăng và các số hạng đều thuộc khoảng (0;1), nên 0<L\leq 1.

Từ P(a_{n+1})=a_n với mọi số nguyên dương n, ta có L^4-L^3+L=L, suy ra \lim a_n=L=1. \Box

Chessboard comeback


Trưa nay tôi được hỏi câu V trong đề thi tuyển sinh vào lớp 10 Chuyên toán năm học 2024-2025 của Hà Nội. Trong bài này tôi sẽ phát biểu bài toán tổng quát và giới thiệu một lời giải của bài toán đó.

Bài toán. Cho một số nguyên n lớn hơn 1 và một bảng ô vuông cỡ n\times n. Ban đầu một số ô vuông của bảng được tô màu đỏ. Sau đó mỗi giây, các ô vuông có chung cạnh với ít nhất hai ô đỏ sẽ được tô đỏ. Hỏi ban đầu cần tô ít nhất bao nhiêu ô vuông để sau một thời gian, tất cả các ô của bảng đều được tô đỏ?

Lời giải. Cần tô màu ít nhất n ô để sau một thời gian, tất cả các ô của bảng đều được tô đỏ.

Mỗi ô vuông con được xem là có cạnh 1. Gọi k là số ô được tô đỏ ban đầu, và ở mỗi thời điểm gọi S là tổng chu vi của các vùng được tô đỏ. Ta thấy ban đầu S\leq 4k và nếu tất cả các ô của bảng mang màu đỏ thì S=4n. Để ý rằng sau mỗi giây S không tăng. Vì thế, nếu sau một thời gian các ô đều mang màu đỏ thì 4k\geq 4n, suy ra k\geq n.

Bây giờ nếu lúc đầu tô n ô dọc theo một đường chéo chính của bảng thì sau một thời gian, tất cả các ô của bảng đều được tô đỏ. \Box