IMO Shortlist 2023: Geometry


G1. https://artofproblemsolving.com/community/c6h3359760p31218557

Cho ABCDE là một ngũ giác lồi thỏa mãn \angle ABC = \angle AED = 90^\circ. Giả sử trung điểm của CD là tâm của đường tròn ngoại tiếp tam giác ABE. Gọi O là tâm của đường tròn ngoại tiếp tam giác ACD. Chứng minh rằng đường thẳng AO đi qua trung điểm của đoạn thẳng BE.

G2. https://artofproblemsolving.com/community/c6h3359729p31218382

Cho tam giác ABC với AC > BC. Gọi \omega là đường tròn ngoại tiếp tam giác ABC, và r là bán kính của nó. Điểm P được chọn trên {AC} sao cho BC=CP, và điểm S là chân đường vuông góc hạ từ P xuống {AB}. Tia BP cắt lại \omega tại D. Điểm Q được chọn trên đường thẳng SP sao cho PQ = rS, P, Q thẳng hàng theo thứ tự đó. Cuối cùng, gọi E là một điểm thỏa mãn {AE} \perp {CQ}{BE} \perp {DQ}. Chứng minh rằng E nằm trên \omega.

G3. https://artofproblemsolving.com/community/c6h3359737p31218405

Cho tứ giác nội tiếp ABCD với \angle BAD < \angle ADC. Gọi M là trung điểm của cung CD không chứa A. Giả sử có một điểm P nằm trong ABCD sao cho \angle ADB = \angle CPD\angle ADP = \angle PCB. Chứng minh rằng các đường thẳng AD, PM, và BC đồng quy.

G4. https://artofproblemsolving.com/community/c6h3106748p28097552

Cho tam giác nhọn ABC với AB<AC. Gọi S là điểm chính giữa của cung BC chứa A của (ABC). Đường thẳng qua A vuông góc với BC cắt BS tại D và cắt lại (ABC) tại E. Đường thẳng qua D song song với BC cắt BE tại L. (BDL) cắt lại (ABC) tại P. Chứng minh rằng tiếp tuyến của (BDL) tại P cắt BS trên phân giác của góc BAC. (IMO2023/2)

G5. https://artofproblemsolving.com/community/c6h3359731p31218385

Cho tam giác nhọn ABC với đường tròn ngoại tiếp \omega có tâm là O. Các điểm D\neq BE\neq C nằm trên \omega sao cho BD\perp ACCE\perp AB. Giả sử CO cắt AB tại X, và BO cắt AC tại Y. Chứng minh rằng các đường tròn ngoại tiếp các tam giác BXDCYE cùng đi qua một điểm thuộc đường thẳng AO.

G6. https://artofproblemsolving.com/community/c6h3359733p31218391

Cho tam giác nhọn ABC với đường tròn ngoại tiếp \omega. Một đường tròn \Gamma tiếp xúc trong với \omega tại A và tiếp xúc với BC tại D. Các đường thẳng ABAC cắt \Gamma lần lượt tại PQ. Gọi MN là các điểm nằm trên BC sao cho B là trung điểm của DMC là trung điểm của DN. Các đường thẳng MPNQ cắt nhau tại K, và cắt lại \Gamma lần lượt tại IJ. Tia KA cắt đường tròn ngoại tiếp tam giác IJK tại X\neq K. Chứng minh rằng \angle BXP = \angle CXQ.

G7. https://artofproblemsolving.com/community/c6h3359736p31218400

Cho tam giác nhọn ABC với trực tâm H. Gọi \ell_a là đường thẳng đi qua điểm đối xứng với B qua CH và điểm đối xứng với C qua BH. Các đường thẳng \ell_b\ell_c được xác định tương tự. Giả sử ba đường thẳng \ell_a, \ell_b, và \ell_c xác định một tam giác \mathcal T. Chứng minh rằng trực tâm của \mathcal T, tâm đường tròn ngoại tiếp của \mathcal T, và H thẳng hàng.

G8. https://artofproblemsolving.com/community/c6h3107345p28104331

Cho ABC là một tam giác đều. Gọi A_1,B_1,C_1 là các điểm nằm trong tam giác ABC sao cho BA_1=A_1C, CB_1=B_1A, AC_1=C_1B, và

\angle BA_1C+\angle CB_1A+\angle AC_1B=480^\circ.

Giả sử BC_1CB_1 cắt nhau tại A_2, CA_1AC_1 cắt nhau tại B_2, AB_1 BA_1 cắt nhau tại C_2. Chứng minh rằng nếu tam giác A_1B_1C_1 là tam giác không cân thì ba đường tròn ngoại tiếp các tam giác AA_1A_2, BB_1B_2CC_1C_2 đi qua hai điểm chung. (IMO2023/6)

IMO Shortlist 2022: Number theory


N1. Một số nguyên dương được gọi là số Na Uy nếu nó có ba ước dương phân biệt có tổng bằng 2022. Xác định số Na Uy nhỏ nhất.

N2. Tìm tất cả các số nguyên dương n>2 sao cho

\displaystyle n! \mid \prod_{ p<q\le n,\quad p,q\in\mathbb{P}} (p+q).

N3. Cho a > 1 là một số nguyên dương và d > 1 là một số nguyên dương nguyên tố cùng nhau với a. Đặt x_1=1 và với k\geq 1, x_{k+1} = x_k + d nếu không chia hết x_k, =x_k/a nếu a chia hết x_k. Tìm, theo ad, số nguyên dương n lớn nhất mà tồn tại chỉ số k sao cho x_k chia hết cho a^n.

N4. Tìm tất cả các bộ ba số nguyên dương (a,b,p) sao cho p là số nguyên tố và a^p=b!+p.

(IMO2022/5)

N5. Đối với mỗi i\in [9]T\in\mathbb{N}^*, ký hiệu d_i(T) là số lần chữ số i xuất hiện khi tất cả các bội của 1829 trong [T] được viết ra theo cơ số 10. Chứng minh rằng có vô số T\in\mathbb{N}^* sao cho có đúng hai giá trị phân biệt trong các số d_1(T), d_2(T), \dots, d_9(T).

N6. Cho Q là một tập hợp không nhất thiết hữu hạn các số nguyên tố. Đối với một số nguyên dương n, xét phân tích ra thừa số nguyên tố của nó: gọi p(n) là tổng của tất cả các số mũ và q(n) là tổng của các số mũ tương ứng với các số nguyên tố trong Q. Số nguyên dương n được gọi là đặc biệt nếu p(n)+p(n+1)q(n)+q(n+1) đều là số nguyên chẵn. Chứng minh rằng tồn tại một hằng số c>0 không phụ thuộc Q sao cho với mọi số nguyên dương N>100, số các số nguyên đặc biệt trong [N] ít nhất là cN.

N7. Gọi k là một số nguyên dương và S là một tập hữu hạn các số nguyên tố lẻ. Chứng minh rằng có nhiều nhất một cách (sai khác phép quay và đối xứng) để đặt các phần tử của S xung quanh một đường tròn sao cho tích của hai số cạnh nhau bất kỳ có dạng x^2+x+k với một số nguyên dương x.

(IMO2022/3)

N8. Chứng minh rằng với mỗi số nguyên dương n, số 5^n-3^n không chia hết cho số 2^n+65.

Các phần khác đã được đăng ở

Đại số: https://nttuan.org/2024/05/06/isl2022-algebra/

Hình học: https://nttuan.org/2023/09/08/isl2022-geometry/

Tổ hợp: https://nttuan.org/2023/09/29/isl2022-combinatorics/

Bản pdf của IMO SL từ 2014 đến 2021: https://nttuan.org/2023/07/02/isl/

Sau khi sửa một vài chỗ, bản pdf của IMO SL 2022 sẽ được đăng trong link trên.

IMO 2024: Problems and results


Ngày thi thứ nhất (16/7/2024)

Bài 1. https://artofproblemsolving.com/community/c6h3358923

Tìm tất cả các số thực \alpha sao cho với mỗi số nguyên dương n, số

[\alpha]+[2\alpha]+\cdots+[n\alpha]

chia hết cho n.

Bài 2. https://artofproblemsolving.com/community/c6h3358926

Tìm tất cả các cặp số nguyên dương (a,b) sao cho tồn tại các số nguyên dương gN thỏa mãn

\gcd (a^n+b,b^n+a)=g

với mọi số nguyên n\geq N.

Bài 3. https://artofproblemsolving.com/community/c6h3358932

Cho dãy vô hạn các số nguyên dương (a_n)_{n\geq 1} và số nguyên dương N. Giả sử với mọi số nguyên n>N, a_n bằng số lần xuất hiện của a_{n-1} trong dãy số a_1, a_2, \ldots, a_{n-1}. Chứng minh rằng một trong hai dãy số (a_{2n-1})_{n\geq 1}(a_{2n})_{n\geq 1} là tuần hoàn kể từ lúc nào đó.

Ngày thi thứ hai (17/7/2024)

Bài 4. https://artofproblemsolving.com/community/c6h3359767

Cho ABC là một tam giác với AB < AC < BC. Gọi tâm đường tròn nội tiếp và đường tròn nội tiếp của tam giác ABC lần lượt là I\omega. Gọi X là điểm trên đường thẳng BC, khác C, sao cho đường thẳng qua X song song với AC tiếp xúc với \omega. Tương tự, gọi Y là điểm trên đường thẳng BC, khác B, sao cho đường thẳng qua Y song song với AB tiếp xúc với \omega. Đường thẳng AI cắt lại đường tròn ngoại tiếp tam giác ABC tại P. Gọi KL lần lượt là trung điểm của ACAB. Chứng minh rằng \angle KIL + \angle YPX = 180^{\circ}.

Bài 5. https://artofproblemsolving.com/community/c6h3359777

Ốc sên Turbo chơi trò chơi sau trên một bảng ô vuông cỡ 2024\times 2023. Trong 2022 ô vuông con nào đó, có các con quỷ nấp ở đó. Ban đầu, Turbo không biết ô nào có quỷ, nhưng nó biết rằng trên mỗi hàng có đúng một con quỷ, trừ hàng đầu tiên và hàng cuối cùng, và trên mỗi cột có không quá một con quỷ.

Turbo thực hiện một dãy các phép thử để tìm cách đi từ hàng đầu đến hàng cuối của bảng. Tại mỗi lần thử, nó được quyền chọn một ô bất kỳ trên hàng đầu để xuất phát, sau đó liên tục di chuyển giữa các ô, mỗi bước từ một ô sang một ô có chung cạnh với ô mà nó đang đứng (nó được phép đến các ô đã từng đi qua). Nếu nó tới một ô có quỷ thì lần thử này dừng lại và nó được đưa trở lại hàng đầu để thực hiện một lần thử khác. Những con quỷ không di chuyển, và Turbo nhớ mỗi ô mà nó ghé qua có quỷ hay không. Nếu nó tới được một ô bất kỳ trên hàng cuối thì trò chơi kết thúc.

Xác định giá trị nhỏ nhất của n sao cho Turbo luôn có chiến lược đảm bảo tới được hàng cuối cùng sau không quá n lần thử, cho dù các con quỷ có nấp ở đâu.

Bài 6. https://artofproblemsolving.com/community/c6h3359771

Một hàm số f:\mathbb{Q}\to\mathbb{Q} được gọi là đẹp nếu với mỗi số hữu tỷ xy, f(x+f(y))=f(x)+y hoặc f(f(x)+y)=x+f(y). Chứng minh rằng tồn tại số nguyên c sao cho với mọi hàm số đẹp f, có không quá c số hữu tỷ có dạng f(r)+f(-r), với số hữu tỷ r nào đó. Tìm giá trị nhỏ nhất của các số c có tính chất này.


Ban tổ chức quyết định điểm xếp giải như sau:

HCV: \geq 29, HCB: \geq 22, HCĐ: \geq 16.

Đội tuyển Việt Nam được 2 HCB và 3 HCĐ. Đội đứng thứ 33 về tổng điểm.

Top 10 đội có điểm cao nhất. Đội tuyển Trung Quốc đứng thứ hai, sau nhiều năm đứng thứ nhất.

Top 10 thí sinh có điểm cao nhất. Haojia Shi lần thứ hai đạt 42/42 điểm. 🙂

Nguồn ảnh: https://www.imo-official.org/

Chessboard comeback


Trưa nay tôi được hỏi câu V trong đề thi tuyển sinh vào lớp 10 Chuyên toán năm học 2024-2025 của Hà Nội. Trong bài này tôi sẽ phát biểu bài toán tổng quát và giới thiệu một lời giải của bài toán đó.

Bài toán. Cho một số nguyên n lớn hơn 1 và một bảng ô vuông cỡ n\times n. Ban đầu một số ô vuông của bảng được tô màu đỏ. Sau đó mỗi giây, các ô vuông có chung cạnh với ít nhất hai ô đỏ sẽ được tô đỏ. Hỏi ban đầu cần tô ít nhất bao nhiêu ô vuông để sau một thời gian, tất cả các ô của bảng đều được tô đỏ?

Lời giải. Cần tô màu ít nhất n ô để sau một thời gian, tất cả các ô của bảng đều được tô đỏ.

Mỗi ô vuông con được xem là có cạnh 1. Gọi k là số ô được tô đỏ ban đầu, và ở mỗi thời điểm gọi S là tổng chu vi của các vùng được tô đỏ. Ta thấy ban đầu S\leq 4k và nếu tất cả các ô của bảng mang màu đỏ thì S=4n. Để ý rằng sau mỗi giây S không tăng. Vì thế, nếu sau một thời gian các ô đều mang màu đỏ thì 4k\geq 4n, suy ra k\geq n.

Bây giờ nếu lúc đầu tô n ô dọc theo một đường chéo chính của bảng thì sau một thời gian, tất cả các ô của bảng đều được tô đỏ. \Box