Formal power series


Định nghĩa 1. Một chuỗi lũy thừa hình thức là một biểu diễn có dạng

          a_0+a_1x+a_2x^2+a_3x^3+\ldots,

hay gọn hơn \displaystyle\sum_{k=0}^{\infty}a_kx^k. Trong đó (a_n)_{n\geq 0} là một dãy các số phức. Các a_i được gọi là các hệ số của chuỗi lũy thừa hình thức, a_0 được gọi là hệ số tự do của chuỗi lũy thừa hình thức. 

Từ “hình thức” trong định nghĩa trên có nghĩa là ta không bận tâm đến việc cho x các giá trị đặc biệt, ta cũng không quan tâm đến tính hội tụ hay phân kỳ của chuỗi. Tập tất cả các chuỗi lũy thừa hình thức với hệ số thuộc một tập hợp A được ký hiệu bởi A[[x]]. Với một chuỗi lũy thừa hình thức a(x), ta ký hiệu hệ số của x^n trong chuỗi này bởi [x^n]a(x).

Nếu a_i=0 với mọi i>m thì để cho gọn, chuỗi \sum_{n=0}^{\infty}a_nx^n sẽ được viết là

a_0+a_1x+\ldots+a_mx^m.

Chuỗi lũy thừa hình thức với tất cả các hệ số bằng 0 được gọi là chuỗi không, ký hiệu là 0. Tổng và tích của hai chuỗi lũy thừa hình thức \displaystyle\sum_{n=0}^{\infty}a_nx^n\displaystyle\sum_{n=0}^{\infty}b_nx^n được định nghĩa bởi

\displaystyle\sum_{n=0}^{\infty}a_nx^n+\sum_{n=0}^{\infty}b_nx^n=\sum_{n=0}^{\infty}(a_n+b_n)x^n

\displaystyle\left(\sum_{n=0}^{\infty}a_nx^n\right)\left(\sum_{n=0}^{\infty}b_nx^n\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^na_kb_{n-k}\right)x^n.

Với hai phép toán này thì \mathbb{C}[[x]] là một vành giao hoán có đơn vị là chuỗi đơn vị 1+0x^1+0x^2+0x^3+\ldots, ký hiệu là 1.

Tương tự như với các số phức, ta có kết quả sau:

Định lý 1. Nếu ab là các phần tử khác không của \mathbb{C}[[x]], thì chuỗi tích ab cũng khác chuỗi không.

Chứng minh. Gọi m là số tự nhiên nhỏ nhất sao cho [x^m]a\not=0, và n là số tự nhiên nhỏ nhất sao cho [x^n]b\not=0. Khi đó

[x^{m+n}](ab)=([x^m]a)([x^n]b)\not=0,

suy ra ab khác chuỗi không. \Box

Khác với phép nhân trong tập các số phức, không phải mọi chuỗi khác không đều có nghịch đảo. Chẳng hạn, khi a(x)=0+x+0x^2+0x^3+\ldots, (chuỗi này thường được viết là a(x)=x) thì a(x)\not=0 nhưng không có chuỗi b(x) để a(x)b(x)=1.

Định lý 2. Chuỗi a(x) có nghịch đảo khi và chỉ khi [x^0]a(x)\not=0.

Chứng minh. Giả sử chuỗi a(x) có nghịch đảo, và b(x) là nghịch đảo của nó. Khi đó

1=[x^0](ab)=([x^0]a)([x^0]b),

suy ra [x^0]a(x)\not=0.

Bây giờ giả sử \displaystyle a(x)=\sum_{n=0}^{\infty}a_nx^n là một chuỗi lũy thừa hình thức có a_0=[x^0]a(x)\not=0. Chuỗi lũy thừa hình thức \displaystyle b(x)=\sum_{n=0}^{\infty}b_nx^n là nghịch đảo của a(x) khi và chỉ khi a_0b_0=1

\displaystyle\sum _{k=0}^na_kb_{n-k}=0,\quad\forall n\geq 1.

Từ hệ này ta có thể xác định b(x) bởi b_0=1/a_0

\displaystyle b_n=-\frac{1}{a_0}\sum _{k=1}^na_kb_{n-k},\quad\forall n\geq 1. \Box

Khi a là một chuỗi có nghịch đảo thì ta ký hiệu chuỗi nghịch đảo của nó bởi a^{-1}. Tích của chuỗi b và chuỗi a^{-1} thường được viết là \frac{b}{a}.

Ví dụ. Chuỗi lũy thừa hình thức 1-x có nghịch đảo là chuỗi

\displaystyle \frac{1}{1-x}=1+x+x^2+x^3+\ldots

Định nghĩa 2. Dãy các chuỗi lũy thừa hình thức với hệ số phức \{S_n(x)\}_{n\geq 1} được gọi là hội tụ đến chuỗi lũy thừa hình thức với hệ số phức S(x), ký hiệu \displaystyle\lim_{n\to\infty} S_n(x)=S(x), nếu với mỗi n\geq 0 có số nguyên dương N sao cho [x^n]S_i(x)=[x^n]S(x) mỗi khi i\geq N. Trong trường hợp này ta nói \{S_n(x)\}_{n\geq 1} là một dãy hội tụ.

Khi \displaystyle A(x)=\sum_{n\geq 0}a_nx^n là một phần tử khác không của \mathbb{C}[[x]], ta gọi bậc của A(x), ký hiệu \deg A(x), là số n nhỏ nhất sao cho a_n\not=0. Dễ thấy nếu B(x)C(x) là các phần tử khác không của \mathbb{C}[[x]] thì B(x)C(x) cũng là một phần tử khác không của \mathbb{C}[[x]], và

\deg B(x)C(x)=\deg B(x)+\deg C(x).

Ta quy ước \deg 0=\infty. Sử dụng bậc của một chuỗi lũy thừa hình thức ta có một định nghĩa khác của tính hội tụ của dãy các chuỗi lũy thừa hình thức.

Continue reading “Formal power series”

Naive definition of probability


Phép thử ngẫu nhiên, hay phép thử, là một thí nghiệm hay một hành động mà kết quả của nó không thể biết được trước khi phép thử được thực hiện, và khả năng xảy ra của các kết quả là như nhau. Không gian mẫu của phép thử là tập hợp tất cả các kết quả có thể xảy ra khi thực hiện phép thử. Kết quả thuận lợi cho một biến cố (sự kiện) \displaystyle E liên quan đến phép thử \displaystyle T là kết quả của phép thử \displaystyle T làm cho biến cố \displaystyle E xảy ra. Trong bài này ta chỉ xét các phép thử mà không gian mẫu là một tập hợp hữu hạn.

Ví dụ 1. Tung một đồng xu, ta thấy có thể xảy ra một trong hai kết quả sấp (\displaystyle S) hoặc ngửa (\displaystyle N). Phép thử ngẫu nhiên ở đây là tung một đồng xu, không gian mẫu của phép thử là tập hợp \displaystyle \Omega =\{S, N\}. Ta có thể để ý xem các biến cố sau có xảy ra không?

kết quả của phép thử là \displaystyle N.

kết quả của phép thử không là \displaystyle N.

kết quả của phép thử là \displaystyle S hoặc \displaystyle N.

kết quả của phép thử là \displaystyle S\displaystyle N. \Box

Ví dụ 2. Xét phép thử ngẫu nhiên: tung một đồng xu bốn lần. Ta thấy một kết quả là \displaystyle SNNS, và không gian mẫu của phép thử là tập hợp tất cả các dãy gồm \displaystyle 4 chữ cái thuộc \displaystyle \{S,N\}. Chúng ta có thể mã hóa \displaystyle S\displaystyle 1\displaystyle N\displaystyle 0, khi đó mỗi kết quả của phép thử là một dãy \displaystyle (s_1,s_2,s_3,s_4) với các \displaystyle s_j\in\{0;1\} và không gian mẫu của phép thử là tập tất cả các dãy như vậy.

Gọi \displaystyle E_i là sự kiện lần tung thứ \displaystyle i ra mặt ngửa. Tập các kết quả thuận lợi cho \displaystyle E_1, cũng được ký hiệu bởi \displaystyle E_1, là

\displaystyle E_1=\{(0,s_2,s_3,s_4)\mid s_j\in \{0;1\},\quad\forall j\}. Đây là một tập con của không gian mẫu.

Nếu \displaystyle A là biến cố ít nhất một mặt là ngửa thì tập các kết quả thuận lợi cho \displaystyle A, cũng được ký hiệu bởi \displaystyle A, là \displaystyle A=E_1\cup E_2\cup E_3\cup  E_4. Nếu \displaystyle B là biến cố tất cả bốn lần tung đều hiện mặt ngửa thì tập các kết quả thuận lợi cho \displaystyle B\displaystyle B=E_1\cap E_2\cap E_3\cap E_4. \Box

Ví dụ 3. Xét phép thử ngẫu nhiên: Chọn một quân bài từ \displaystyle 52 quân bài. Không gian mẫu \displaystyle \Omega của phép thử là tập tất cả \displaystyle 52 quân bài. Ta quan tâm đến bốn biến cố sau:

\displaystyle A: Quân bài là một con Át.

\displaystyle B: Quân bài có màu đen.

\displaystyle C: Quân bài có chất Rô.

\displaystyle D: Quân bài có chất Cơ.

Như một tập hợp \displaystyle D= {Át cơ, 2 cơ , 3 cơ,…, K cơ}. Ta có thể tạo ra nhiều biến cố từ bốn biến cố này.

\displaystyle A\cap B là biến cố quân bài rút ra là quân Át màu đen.

\displaystyle A\cup C là biến cố quân bài rút ra là quân Át hoặc có chất Rô.

\displaystyle A\cup C\cup D là sự kiện quân bài rút ra là quân Át hoặc có màu đỏ. \Box

Định nghĩa (Định nghĩa ngây thơ của xác suất). Cho \displaystyle A là một biến cố (sự kiện) của một phép thử ngẫu nhiên với không gian mẫu hữu hạn \displaystyle \Omega. Khi đó xác suất của \displaystyle A, hay xác suất xảy ra \displaystyle A, là \displaystyle \mathbb{P}(A)=\frac{\mid A\mid }{\mid \Omega\mid}.

Theo định nghĩa thì \displaystyle 0\leq \mathbb{P}(A)\leq 1, với mọi sự kiện \displaystyle A. Dấu bằng trong bất đẳng thức thứ nhất xảy ra khi và chỉ khi \displaystyle A=\emptyset, lúc này ta gọi \displaystyle A là biến cố rỗng hay biến cố không thể. Dấu bằng trong bất đẳng thức thứ hai xảy ra khi và chỉ khi \displaystyle A=\Omega, lúc này ta gọi \displaystyle A là biến cố chắc chắn. Để tính xác suất của biến cố \displaystyle A, ta cần tính số phần tử của không gian mẫu và số phần tử của \displaystyle A (như một tập hợp).

Ví dụ 4. Tung hai con xúc xắc cân đối. Tính xác suất để tổng hai mặt bằng \displaystyle 10.

Lời giải. Không gian mẫu \displaystyle \Omega là tập tất cả các cặp \displaystyle (a,b) với \displaystyle a\displaystyle b thuộc \displaystyle \{1,2,\ldots,6\}. Tập các kết quả thuận lợi cho biến cố tổng hai mặt bằng \displaystyle 10\displaystyle \{(5,5),(6,4),(4,6)\}, suy ra xác suất cần tính bằng \displaystyle 3/36=1/12\approx 0.0833. \Box

Ví dụ 5. Một ván bài \displaystyle 5 lá được chia từ một bộ bài \displaystyle 52 lá tiêu chuẩn, được xáo trộn kỹ lưỡng. Ván bài được gọi là cù lũ trong poker nếu nó bao gồm ba lá bài ở cấp độ nào đó và hai lá bài ở cấp độ khác, ví dụ: ba lá bài \displaystyle 7 và hai lá bài \displaystyle 10 (theo bất kỳ thứ tự nào). Xác suất để có một cù lũ bằng bao nhiêu?

Lời giải. Không gian mẫu là họ tất cả các tập con gồm \displaystyle 5 lá bài trong bộ bài đã cho. Ta có ngay \displaystyle \mid \Omega \mid =C_{52}^5. Có \displaystyle 13\times 12 cách chọn lần lượt hạng của bộ ba và đôi trong một cù lũ. Sau đó, có \displaystyle C_4^3\times C_4^2 cách chọn lần lượt một bộ ba và một đôi trong các hạng đã chọn trước đó. Suy ra xác suất cần tính bằng \displaystyle \frac{13\times 12\times C_4^3\times C_4^2}{C_{52}^5}=\frac{3744}{2598960}\approx 0.0014. \Box

Continue reading “Naive definition of probability”

IMO Shortlist 2022: Combinatorics


Trong bài này tôi sẽ dịch phần Tổ hợp trong cuốn IMO Shortlist 2022. Các năm trước bạn có thể tìm ở đường dẫn https://nttuan.org/2023/07/02/isl/.

Phần Hình của năm 2022 tôi đã dịch ở đây

C1. Một \pm 1-dãy là một dãy gồm 2022 số a_1, \ldots, a_{2022}, mỗi số bằng +1 hoặc -1. Tìm số C lớn nhất sao cho, đối với bất kỳ dãy \pm 1 nào, tồn tại một số nguyên k và các chỉ số 1 \le t_1 < \ldots < t_k \le 2022 để t_{i+1} - t_i \le 2 với mọi i, và \displaystyle \left| \sum_{i=1}^{k} a_{t_i} \right| \ge C.

C2. Ngân hàng Oslo phát hành hai loại tiền xu: nhôm (ký hiệu là A) và đồng (ký hiệu là B). Alpha có n đồng xu nhôm và n đồng xu đồng được sắp xếp thành một hàng theo thứ tự ban đầu tùy ý. Một chuỗi là bất kỳ dãy con nào các đồng xu liên tiếp có cùng loại. Cho một số nguyên dương cố định k \leq 2n, Beta lặp đi lặp lại thao tác sau: anh ta xác định chuỗi dài nhất chứa đồng xu thứ k từ bên trái và di chuyển tất cả đồng xu trong chuỗi đó sang đầu bên trái của hàng. Ví dụ: nếu n=4k=4, quá trình bắt đầu từ AABBBABA sẽ là

AABBBABA \to BBBAAABA \to AAABBBBA \to BBBBAAAA \to ...

Tìm tất cả các cặp (n,k) với 1 \leq k \leq 2n sao cho với mỗi cách xếp các đồng xu lúc đầu, tại một thời điểm nào đó trong quá trình, n đồng xu ngoài cùng bên trái có cùng loại.

C3. Trong mỗi ô vuông của một khu vườn có dạng bảng ô vuông cỡ 2022 \times 2022, ban đầu có một cái cây cao 0. Một người làm vườn và một thợ đốn gỗ thay phiên nhau chơi trò chơi sau, người làm vườn sẽ chơi ở lượt đầu tiên:

(1) Người làm vườn chọn một ô vuông trong vườn. Sau đó mỗi cây trên ô vuông đó và tất cả các ô vuông xung quanh trở thành cao hơn một đơn vị.

(2) Người thợ đốn gõ chọn bốn ô vuông khác nhau trong vườn. Sau đó mỗi cây có chiều cao dương trên các ô vuông đó sẽ trở thành thấp hơn một đơn vị.

Ta nói rằng một cái cây là hùng vĩ nếu chiều cao của nó ít nhất là 10^6. Tìm số K lớn nhất sao cho người làm vườn có thể đảm bảo cuối cùng sẽ có K cây hùng vĩ trong vườn, bất kể người thợ đốn gỗ chơi như thế nào.

C4. Cho một số nguyên n > 3. Giả sử rằng n đứa bé được sắp xếp thành một vòng tròn và n đồng xu được phân phát cho chúng (một số bé có thể không có đồng xu nào). Ở mỗi bước, bé có ít nhất 2 đồng xu có thể đưa 1 đồng xu cho mỗi bé ngay bên phải và bên trái của mình. Hãy tìm tất cả các cách phân phát các đồng xu ban đầu sao cho sau một số hữu hạn bước, mỗi bé có đúng một đồng xu.

C5. Cho m,n \geqslant 2 là các số nguyên, X là một tập hợp có n phần tử, và X_1, X_2, \ldots, X_m là các tập hợp con khác rỗng phân biệt của X. Một hàm f \colon X \to \{1,2,\ldots,n+1\} được gọi là tốt nếu tồn tại một chỉ số k sao cho \displaystyle\sum_{x \in X_k} f(x )>\sum_{x \in X_i} f(x), \quad \forall i \ne k. Chứng minh rằng số hàm tốt ít nhất là n^n.

C6. Cho n là một số nguyên dương. Chúng ta bắt đầu với n đống sỏi, mỗi đống ban đầu chỉ chứa một viên sỏi. Người ta có thể thực hiện các bước di chuyển theo hình thức sau: chọn hai đống, lấy một số viên sỏi bằng nhau từ mỗi đống và tạo thành một đống mới từ những viên sỏi này. Tìm, theo n, số nhỏ nhất các đống sỏi khác rỗng mà một người có thể thu được bằng cách thực hiện một dãy hữu hạn các bước di chuyển có dạng này.

C7. Lucy bắt đầu bằng cách viết s bộ 2022 số nguyên lên bảng đen. Sau khi làm điều đó, cô ấy có thể lấy hai bộ bất kỳ (không nhất thiết phải khác nhau) \mathbf{v}=(v_1,\ldots,v_{2022})\mathbf{w}=(w_1,\ldots,w_{ 2022}) mà cô ấy đã viết và áp dụng một trong các thao tác sau để lấy bộ mới:

\mathbf{v}+\mathbf{w}=(v_1+w_1,\ldots,v_{2022}+w_{2022})

\mathbf{v} \lor \mathbf{w}=(\max(v_1,w_1),\ldots,\max(v_{2022},w_{2022}))

rồi viết bộ này lên bảng. Sau hữu hạn bước, theo cách này, Lucy có thể viết bất kỳ bộ 2022 số nguyên nào lên bảng. Số s nhỏ nhất có thể là bao nhiêu?

C8. Cho n là một số nguyên dương. Hình vuông Bắc Âu là một bảng ô vuông n \times n chứa tất cả các số nguyên từ 1 đến n^2 sao cho mỗi ô chứa đúng một số. Hai ô khác nhau được gọi là kề nếu chúng có chung một cạnh. Mỗi ô chỉ kề với các ô chứa số lớn hơn được gọi là thung lũng. Đường lên dốc là một dãy gồm một hoặc nhiều ô sao cho các điều kiện sau được thỏa mãn đồng thời:

(i) ô đầu tiên trong dãy là một thung lũng,

(ii) mỗi ô tiếp theo trong dãy kề với ô trước đó,

(iii) các số trên các ô trong dãy lập thành một dãy tăng theo thứ tự.

Tìm, theo n, số nhỏ nhất đường lên dốc có thể có trong một hình vuông Bắc Âu.

C9. Xét các song ánh f:\mathbb N\times \mathbb N \to \mathbb N có tính chất: mỗi khi f(x_1,y_1) > f(x_2, y_2), thì f(x_1+1, y_1) > f(x_2 + 1, y_2)f(x_1, y_1+1) > f(x_2, y_2+1). Gọi k là số cặp số nguyên (x,y) sao cho 0\le x,y<100f(x,y) is số nguyên lẻ. Tìm giá trị lớn nhất và giá trị nhỏ nhất của k.

Popoviciu’s theorem


Trong  bài này chúng tôi sẽ giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên.

Định lí. (Công thức Popoviciu)  Gọi N(a,b;n) là số các cặp số tự nhiên (x,y) sao cho ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên. Khi đó

\displaystyle N(a,b;n)=\frac{n}{ab}-\left\{\frac{a^{-1}n}{b}\right\}-\left\{\frac{b^{-1}n}{a}\right\}+1, với a^{-1} là nghịch đảo modulo b của ab^{-1} là nghịch đảo modulo a của b.

Chứng minh. Gọi \displaystyle F(z)=\sum_{n=0}^{+\infty}N(a,b;n)z^n là hàm sinh của dãy số \{N(a,b;n)\}_{n\geq 0}. Ta có

\displaystyle F(z)=\sum_{k\in\mathbb{N}}\sum_{l\in\mathbb{N}}z^{ak}z^{bl}=\frac{1}{(1-z^a)(1-z^b)}.\quad (1)

(a,b)=1 nên đa thức (1-z^a)(1-z^b) có nghiệm là 1 với bội 2 và các nghiệm đơn \xi_a^k (k=1,2,\ldots,a-1), \xi_b^l (l=1,2,\ldots,b-1), ở đây \xi_a=\cos\dfrac{2\pi}{a}+i\sin \dfrac{2\pi}{a}\xi_b=\cos\dfrac{2\pi}{b}+i\sin \dfrac{2\pi}{b}. Kết hợp với (1) ta có tồn tại các số phức C_1,C_2; A_i; B_i sao cho

\displaystyle F(z)=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (2)

Để ý đến hệ số của z^n, từ (2) ta có

\displaystyle N(a,b;n)=C_1+C_2(n+1)+\sum_{k=1}^{a-1}A_k\xi_a^{-nk}+\sum_{l=1}^{b-1}B_l\xi_b^{-nl}.\quad (3)

Bây giờ ta sẽ đi tìm các số phức C_1,C_2; A_i; B_i từ đẳng thức

\displaystyle \frac{1}{(1-z^a)(1-z^b)}=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (4)

Nhân hai vế của (4) với (1-z)^2 và cho z\to 1 ta có C_2=\dfrac{1}{ab}, sau đó nhân hai vế của (4) với 1-z, để C_1 một bên và cho z\to 1 ta được C_1=\dfrac{a+b-2}{2ab}. Theo cùng một cách ta có

\displaystyle A_k=\frac{1}{a(1-\xi_a^{kb})},\quad B_l=\frac{1}{b(1-\xi_b^{la})}.

Thay vào (3) ta được

\displaystyle N(a,b;n)=\frac{n}{ab}+\frac{a+b}{2ab}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}+\frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}.\quad (5)

Từ (5) ta có \displaystyle N(a,1;n)=\frac{n}{a}+\frac{a+1}{2a}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}, mà \displaystyle N(a,1;n)=\left[\frac{n}{a}\right]+1, suy ra

\displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{n}{a}\right\}-\frac{1}{2a},

do đó \displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}=\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nb^{-1}k}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{nb^{-1}}{a}\right\}-\frac{1}{2a},

chứng minh tương tự ta được

\displaystyle \frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}=\frac{1}{2}-\left\{\frac{na^{-1}}{b}\right\}-\frac{1}{2b},

thay hai đẳng thức cuối cùng vào (5) ta có điều cần chứng minh. \Box