IMO Shortlist 2022: Combinatorics


Trong bài này tôi sẽ dịch phần Tổ hợp trong cuốn IMO Shortlist 2022. Các năm trước bạn có thể tìm ở đường dẫn https://nttuan.org/2023/07/02/isl/.

Phần Hình của năm 2022 tôi đã dịch ở đây

C1. Một \pm 1-dãy là một dãy gồm 2022 số a_1, \ldots, a_{2022}, mỗi số bằng +1 hoặc -1. Tìm số C lớn nhất sao cho, đối với bất kỳ dãy \pm 1 nào, tồn tại một số nguyên k và các chỉ số 1 \le t_1 < \ldots < t_k \le 2022 để t_{i+1} - t_i \le 2 với mọi i, và \displaystyle \left| \sum_{i=1}^{k} a_{t_i} \right| \ge C.

C2. Ngân hàng Oslo phát hành hai loại tiền xu: nhôm (ký hiệu là A) và đồng (ký hiệu là B). Alpha có n đồng xu nhôm và n đồng xu đồng được sắp xếp thành một hàng theo thứ tự ban đầu tùy ý. Một chuỗi là bất kỳ dãy con nào các đồng xu liên tiếp có cùng loại. Cho một số nguyên dương cố định k \leq 2n, Beta lặp đi lặp lại thao tác sau: anh ta xác định chuỗi dài nhất chứa đồng xu thứ k từ bên trái và di chuyển tất cả đồng xu trong chuỗi đó sang đầu bên trái của hàng. Ví dụ: nếu n=4k=4, quá trình bắt đầu từ AABBBABA sẽ là

AABBBABA \to BBBAAABA \to AAABBBBA \to BBBBAAAA \to ...

Tìm tất cả các cặp (n,k) với 1 \leq k \leq 2n sao cho với mỗi cách xếp các đồng xu lúc đầu, tại một thời điểm nào đó trong quá trình, n đồng xu ngoài cùng bên trái có cùng loại.

C3. Trong mỗi ô vuông của một khu vườn có dạng bảng ô vuông cỡ 2022 \times 2022, ban đầu có một cái cây cao 0. Một người làm vườn và một thợ đốn gỗ thay phiên nhau chơi trò chơi sau, người làm vườn sẽ chơi ở lượt đầu tiên:

(1) Người làm vườn chọn một ô vuông trong vườn. Sau đó mỗi cây trên ô vuông đó và tất cả các ô vuông xung quanh trở thành cao hơn một đơn vị.

(2) Người thợ đốn gõ chọn bốn ô vuông khác nhau trong vườn. Sau đó mỗi cây có chiều cao dương trên các ô vuông đó sẽ trở thành thấp hơn một đơn vị.

Ta nói rằng một cái cây là hùng vĩ nếu chiều cao của nó ít nhất là 10^6. Tìm số K lớn nhất sao cho người làm vườn có thể đảm bảo cuối cùng sẽ có K cây hùng vĩ trong vườn, bất kể người thợ đốn gỗ chơi như thế nào.

C4. Cho một số nguyên n > 3. Giả sử rằng n đứa bé được sắp xếp thành một vòng tròn và n đồng xu được phân phát cho chúng (một số bé có thể không có đồng xu nào). Ở mỗi bước, bé có ít nhất 2 đồng xu có thể đưa 1 đồng xu cho mỗi bé ngay bên phải và bên trái của mình. Hãy tìm tất cả các cách phân phát các đồng xu ban đầu sao cho sau một số hữu hạn bước, mỗi bé có đúng một đồng xu.

C5. Cho m,n \geqslant 2 là các số nguyên, X là một tập hợp có n phần tử, và X_1, X_2, \ldots, X_m là các tập hợp con khác rỗng phân biệt của X. Một hàm f \colon X \to \{1,2,\ldots,n+1\} được gọi là tốt nếu tồn tại một chỉ số k sao cho \displaystyle\sum_{x \in X_k} f(x )>\sum_{x \in X_i} f(x), \quad \forall i \ne k. Chứng minh rằng số hàm tốt ít nhất là n^n.

C6. Cho n là một số nguyên dương. Chúng ta bắt đầu với n đống sỏi, mỗi đống ban đầu chỉ chứa một viên sỏi. Người ta có thể thực hiện các bước di chuyển theo hình thức sau: chọn hai đống, lấy một số viên sỏi bằng nhau từ mỗi đống và tạo thành một đống mới từ những viên sỏi này. Tìm, theo n, số nhỏ nhất các đống sỏi khác rỗng mà một người có thể thu được bằng cách thực hiện một dãy hữu hạn các bước di chuyển có dạng này.

C7. Lucy bắt đầu bằng cách viết s bộ 2022 số nguyên lên bảng đen. Sau khi làm điều đó, cô ấy có thể lấy hai bộ bất kỳ (không nhất thiết phải khác nhau) \mathbf{v}=(v_1,\ldots,v_{2022})\mathbf{w}=(w_1,\ldots,w_{ 2022}) mà cô ấy đã viết và áp dụng một trong các thao tác sau để lấy bộ mới:

\mathbf{v}+\mathbf{w}=(v_1+w_1,\ldots,v_{2022}+w_{2022})

\mathbf{v} \lor \mathbf{w}=(\max(v_1,w_1),\ldots,\max(v_{2022},w_{2022}))

rồi viết bộ này lên bảng. Sau hữu hạn bước, theo cách này, Lucy có thể viết bất kỳ bộ 2022 số nguyên nào lên bảng. Số s nhỏ nhất có thể là bao nhiêu?

C8. Cho n là một số nguyên dương. Hình vuông Bắc Âu là một bảng ô vuông n \times n chứa tất cả các số nguyên từ 1 đến n^2 sao cho mỗi ô chứa đúng một số. Hai ô khác nhau được gọi là kề nếu chúng có chung một cạnh. Mỗi ô chỉ kề với các ô chứa số lớn hơn được gọi là thung lũng. Đường lên dốc là một dãy gồm một hoặc nhiều ô sao cho các điều kiện sau được thỏa mãn đồng thời:

(i) ô đầu tiên trong dãy là một thung lũng,

(ii) mỗi ô tiếp theo trong dãy kề với ô trước đó,

(iii) các số trên các ô trong dãy lập thành một dãy tăng theo thứ tự.

Tìm, theo n, số nhỏ nhất đường lên dốc có thể có trong một hình vuông Bắc Âu.

C9. Xét các song ánh f:\mathbb N\times \mathbb N \to \mathbb N có tính chất: mỗi khi f(x_1,y_1) > f(x_2, y_2), thì f(x_1+1, y_1) > f(x_2 + 1, y_2)f(x_1, y_1+1) > f(x_2, y_2+1). Gọi k là số cặp số nguyên (x,y) sao cho 0\le x,y<100f(x,y) is số nguyên lẻ. Tìm giá trị lớn nhất và giá trị nhỏ nhất của k.

IMO2021/6


Trong bài này tôi giới thiệu hai lời giải cho bài 6 trong đề thi IMO 2021, lời giải thứ hai có dùng bổ đề Siegel mà tôi đã giới thiệu cách đây rất lâu ở đường dẫn https://nttuan.org/2007/10/21/siegel/. Các bạn có thể tìm các bài toán khác trong đề IMO 2021 ở đây https://nttuan.org/2021/07/25/imo2021/

Bài toán (IMO2021/6). Cho số nguyên m\ge 2, A là một tập hữu hạn các số nguyên và B_1, B_2, …,B_m là các tập con của A. Giả sử rằng với mỗi k=1,2,...,m, tổng các phần tử của B_km^k. Chứng minh rằng A có ít nhất \frac{m}{2} phần tử.

Lời giải 1. Đặt k=|A| và giả sử A = \{a_1,a_2,\ldots,a_k\}. Từ giả thiết, với mỗi i\in [m], ta có \displaystyle m^i = \sum_{j=1}^{k}b_{i,j}a_{j}\quad (1) với các b_{i,j} \in \{0;1\}. Với mỗi 0 \le x \le m^{m}-1, biểu diễn mx theo cơ số m và kết hợp với (1) ta được \displaystyle mx = \sum_{j=1}^{k}c_{j}a_{j}, trong đó các c_j là số nguyên thỏa mãn 0 \le c_j \le (m-1)m,\quad\forall j\in [k]. Vế trái của đẳng thức này nhận đúng m^{m} giá trị, do đó \displaystyle m^{m} \le [m(m-1)+1]^{k} < m^{2k}, suy ra |A|=k>m/2. \Box

Continue reading “IMO2021/6”

Popoviciu’s theorem


Trong  bài này chúng tôi sẽ giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên.

Định lí. (Công thức Popoviciu)  Gọi N(a,b;n) là số các cặp số tự nhiên (x,y) sao cho ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên. Khi đó

\displaystyle N(a,b;n)=\frac{n}{ab}-\left\{\frac{a^{-1}n}{b}\right\}-\left\{\frac{b^{-1}n}{a}\right\}+1, với a^{-1} là nghịch đảo modulo b của ab^{-1} là nghịch đảo modulo a của b.

Chứng minh. Gọi \displaystyle F(z)=\sum_{n=0}^{+\infty}N(a,b;n)z^n là hàm sinh của dãy số \{N(a,b;n)\}_{n\geq 0}. Ta có

\displaystyle F(z)=\sum_{k\in\mathbb{N}}\sum_{l\in\mathbb{N}}z^{ak}z^{bl}=\frac{1}{(1-z^a)(1-z^b)}.\quad (1)

(a,b)=1 nên đa thức (1-z^a)(1-z^b) có nghiệm là 1 với bội 2 và các nghiệm đơn \xi_a^k (k=1,2,\ldots,a-1), \xi_b^l (l=1,2,\ldots,b-1), ở đây \xi_a=\cos\dfrac{2\pi}{a}+i\sin \dfrac{2\pi}{a}\xi_b=\cos\dfrac{2\pi}{b}+i\sin \dfrac{2\pi}{b}. Kết hợp với (1) ta có tồn tại các số phức C_1,C_2; A_i; B_i sao cho

\displaystyle F(z)=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (2)

Để ý đến hệ số của z^n, từ (2) ta có

\displaystyle N(a,b;n)=C_1+C_2(n+1)+\sum_{k=1}^{a-1}A_k\xi_a^{-nk}+\sum_{l=1}^{b-1}B_l\xi_b^{-nl}.\quad (3)

Bây giờ ta sẽ đi tìm các số phức C_1,C_2; A_i; B_i từ đẳng thức

\displaystyle \frac{1}{(1-z^a)(1-z^b)}=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (4)

Nhân hai vế của (4) với (1-z)^2 và cho z\to 1 ta có C_2=\dfrac{1}{ab}, sau đó nhân hai vế của (4) với 1-z, để C_1 một bên và cho z\to 1 ta được C_1=\dfrac{a+b-2}{2ab}. Theo cùng một cách ta có

\displaystyle A_k=\frac{1}{a(1-\xi_a^{kb})},\quad B_l=\frac{1}{b(1-\xi_b^{la})}.

Thay vào (3) ta được

\displaystyle N(a,b;n)=\frac{n}{ab}+\frac{a+b}{2ab}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}+\frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}.\quad (5)

Từ (5) ta có \displaystyle N(a,1;n)=\frac{n}{a}+\frac{a+1}{2a}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}, mà \displaystyle N(a,1;n)=\left[\frac{n}{a}\right]+1, suy ra

\displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{n}{a}\right\}-\frac{1}{2a},

do đó \displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}=\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nb^{-1}k}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{nb^{-1}}{a}\right\}-\frac{1}{2a},

chứng minh tương tự ta được

\displaystyle \frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}=\frac{1}{2}-\left\{\frac{na^{-1}}{b}\right\}-\frac{1}{2b},

thay hai đẳng thức cuối cùng vào (5) ta có điều cần chứng minh. \Box

Burnside’s lemma


Cho X là một tập hợp và G là một nhóm. Ta nói G tác động trên X, hay X là một G-tập, nếu có hàm G\times X\to X, (g,x)\mapsto gx thoả mãn ex=x\forall x\in Xg_1(g_2x)=(g_1g_2)x\forall x\in X\forall g_1,g_2\in G, ở đây e là phần tử đơn vị của G.

Gìơ ta xét một G-tập X, với mỗi x\in X, ta gọi quỹ đạo của x là tập \{gx|g\in G\}. Các quỹ đạo khác nhau của các phần tử trong X làm thành một phân hoạch của X, thật vậy, quan hệ xRy nếu có g\in G để x=gy là một quan hệ tương đương trên X. Khi XG là các tập hữu hạn thì ta có thể tính số khối của phân hoạch này theo bổ đề sau đây.

Bổ đề Burnside. Nếu X là một G-tập hữu hạn (nghĩa là XG là các tập hữu hạn và X là một G-tập) và N là số các quỹ đạo khác nhau của các phần tử trong X thì N=\dfrac{1}{|G|}\sum_{g\in G}F(g), trong đó với mỗi g\in G, F(g) là số phần tử của tập \{x\in X|gx=x\}.

Tôi sẽ không đưa ra chứng minh nào của bổ đề này ở  đây, các bạn có thể tìm một chứng minh  trong sách Tổ hợp của Ngô Đắc Tân hay sách về lý thuyết nhóm của Rotman. Gìơ ta đi xét các áp dụng của bổ đề này vào giải các bài toán đếm, các bài tập này đều có trong sách của Rotman.

Bài 1. Cho nq là các số nguyên dương. Hỏi có bao nhiêu lá cờ gồm n mảnh sao cho mỗi mảnh mang một trong q màu cho trước?(Ví dụ một lá cờ như vậy là cờ của Pháp gồm 3 mảnh).

Lời giải. Vì khi ta tô màu một mặt của lá cờ thì mặt sau sẽ được xác định hoàn toàn màu. Nên số lá cờ bằng số cách tô bảng 1\times n bởi q màu, hai cách tô là như nhau nếu nó ở dạng như hình dưới đây.

(Trong hình trên các c_i là các màu.)

Gọi X là tập các bộ (c_1,c_2,\cdots,c_n) với c_i là một trong q màu đã cho với mỗi i. Ký hiệu S_n là nhóm các hoán vị trên \{1,2,\cdots,n\}, G là nhóm con cyclic sinh bởi hoán vị f của S_n, ở đây f(i)=n+1-i\forall i. Ta cho G tác động trên X theo luật f(c_1,c_2,\cdots,c_n)=(c_n,c_{n-1},\cdots,c_1). Như trên đã phân tích, ta chỉ cần đếm số N các quỹ đạo của các phần tử của x theo tác động này là xong. Theo bổ đề Burnside, ta chỉ cần tính F(id)F(f). Dễ thấy F(id)=|X|=q^n theo quy tắc nhân. Để tính F(f), ta chú ý rằng (c_1,c_2,\cdots,c_n)\in X không thay đổi khi tác động f nếu và chỉ nếu c_1=c_n,c_2=c_{n-1},\cdots, vậy cùng theo quy tắc nhân ta có F(f)=q^{[\dfrac{n+1}{2}]}. Như thế đáp số của bài toán là \dfrac{1}{2}(q^n+q^{[\dfrac{n+1}{2}]}).

Bài 2. Cho nq là các số nguyên dương. Chứng minh rằng có

\dfrac{1}{4}(q^{n^2}+2q^{[\dfrac{n^2+3}{4}]}+q^{[\dfrac{n^2+1}{2}]}) cách tô màu bảng vuông n\times n bởi q màu.

Lời giải sơ lược. Lời giải y hệt như trường hợp trên. Ta đánh số các ô của bảng theo kiểu xoáy ốc, chia hai trường hợp n chẵn, lẻ cho dễ đánh số. Tập X bây giờ là tập tất cả các bộ (c_1,c_2,\cdots,c_{n^2}), nhóm G bây giờ là nhóm con cyclic cấp 4 sinh bởi phép quay +90^0 của S_{n^2}.

Chú ý.  Khi n=3,q=n ta có bài số 5 trong VMO 2010.