Continued fraction expansion of rational numbers


In this section we use continued fractions ([2]) for expansion of rational numbers. If \displaystyle x_0, \displaystyle x_1, \displaystyle \ldots, are integer nunbers with \displaystyle x_i>0 for every \displaystyle i>0 then \displaystyle [x_0;x_1,x_2,\ldots,x_n]\in\mathbb{Q},\quad\forall n\geq 0.

Conversly, we have the theorem

Theorem 1. Let \displaystyle r and \displaystyle s be coprime integers with \displaystyle s>0. Then there are non negative integer \displaystyle n and integers \displaystyle a_0, \displaystyle a_1, \displaystyle \ldots, \displaystyle a_n such that

(1) \displaystyle a_i>0 for every \displaystyle i=1,2,\ldots,n.

(2) \displaystyle r/s=[a_0;a_1,a_2,\ldots,a_n].

Proof. Let us proceed by induction on \displaystyle s. The case \displaystyle s=1 is trivial. Now suppose that the assertion is true for all positive integers up to \displaystyle s-1 (\displaystyle s>1). Because \displaystyle (r,s)=1 and \displaystyle s>1, we have \displaystyle s\nmid r. Hence by the Division Algorithm ([1]), there are integers \displaystyle a and \displaystyle b such that

\displaystyle r=sa+b,\quad 1\leq b<s.\quad\quad (1)

By the hypothesis of the induction, there are integers \displaystyle m>0, \displaystyle a_1, \displaystyle a_2>0, \displaystyle \ldots, \displaystyle a_m>0 such that

\displaystyle \frac{s}{b}=[a_1;a_2,a_3,\ldots,a_m].\quad\quad (2)

Because \displaystyle s>b, we have \displaystyle a_1>0. From (1) and (2) we have

\displaystyle \frac{r}{s}=a+\frac{1}{s/b}=a+\frac{1}{[a_1;a_2,a_3,\ldots,a_m]}=[a;a_1,a_2,\ldots,a_m], completing the induction step. \Box

The equality in the theorem is called an expansion of \displaystyle r/s into a finite continued fraction. In that expansion we will call \displaystyle [a_0;a_1,a_2,\ldots,a_i] is the i-th convergent of the continued fraction, or i-th convergent of \displaystyle r/s.

Example 1. Find an expansion of \displaystyle 43/5 into a finite continued fraction.

Solution. By the Division Algorithm, we have

\displaystyle 43=5\cdot 8+3\quad\quad\frac{43}{5}=8+\frac{3}{5}=8+\frac{1}{5/3}, and

\displaystyle 5= 3\cdot 1 +2\quad\quad\frac{5}{3}=1+\frac{2}{3}=1+\frac{1}{3/2}, and \displaystyle \frac{3}{2}=1+\frac{1}{2}. Therefore \displaystyle 43/5=[8;1,1,2]. \Box

The theorem says that for every rational number has an expansion into a finite continued fraction. But this expansion is not unique.

Example 2. \displaystyle 13/5=[2;1,1,2]=[2;1,1,1,1]. \Box

Theorem 2. Let \displaystyle \alpha be an integer number. Then \displaystyle \alpha has exactly two expansions into a finite continued fraction.

Proof. By the theorem 1, we can write

\displaystyle \alpha=[a_0;a_1,a_2,\ldots,a_n],

where a_0, a_1, \ldots, a_n are integers such that a_i>0 for every i=1,2,\ldots,n. If \displaystyle n=0 then \displaystyle \alpha=a_0 and \displaystyle \alpha=[\alpha] is an expansion of \displaystyle \alpha. If \displaystyle n=1 then \displaystyle \alpha=a_0+\frac{1}{a_1}, hence \displaystyle \frac{1}{a_1} is an integer, so \displaystyle a_1=1. Therefore \displaystyle \alpha=[\alpha-1;1] is an expansion of \displaystyle \alpha.

Now assume that \displaystyle n\geq 2. We have

\displaystyle \alpha-a_0=\frac{1}{[a_1;a_2,\ldots,a_n]}

is an integer number and \displaystyle [a_1;a_2,\ldots,a_n]>0 , hence \displaystyle [a_1;a_2,\ldots,a_n]\leq 1. This claim is false because \displaystyle n\geq 2 and \displaystyle a_i\geq 1 for every \displaystyle i=1,2,\ldots,n. \Box

Theorem 3. Let \displaystyle \alpha be a rational number but not an integer. Then \displaystyle \alpha has exactly two expansions into a finite continued fraction.

Proof. Assume that \displaystyle \alpha=\alpha=r/s, where \displaystyle r and \displaystyle s>1 are coprime integers. We prove by induction on \displaystyle s that \displaystyle \alpha has exactly two expansions into a finite continued fraction

\displaystyle \alpha=[a_0;a_1,\ldots,a_n]=[a_0;a_1,\ldots,a_n-1,1],

where \displaystyle a_n>1. If \displaystyle s=2, because \displaystyle (r,s)=1 there is an integer \displaystyle k such that \displaystyle r=2k+1. By the theorem 1, we can write

\displaystyle \alpha=k+\frac{1}{2}=[a_0;a_1,a_2,\ldots,a_n],

where a_0, a_1, \ldots, a_n are integers such that a_i>0 for every i=1,2,\ldots,n. We have n>0 and a_0=k, hence \displaystyle 2=[a_1;a_2,\ldots,a_n]. By the theorem 2, we have 2 has exactly two expansions into a finite continued fraction, those are 2=[2] and 2=[1;1], therefore \alpha has exactly two expansions \displaystyle \alpha=[k;2]=[k;1,1], hence the claim is true for \displaystyle s=2. Now suppose that the claim is true for \displaystyle 2, \displaystyle 3, \displaystyle \ldots, \displaystyle s-1 (\displaystyle s>2). By the theorem 1, we can write

\displaystyle \alpha=[a_0;a_1,a_2,\ldots,a_n],

where a_0, a_1, \ldots, a_n are integers such that a_i>0 for every i=1,2,\ldots,n. We have n>0 and a_0=[\alpha] (integer part of \alpha), hence \displaystyle \frac{1}{\alpha-[\alpha]}=[a_1;a_2,\ldots,a_n]. By the Division Algorithm, there is an integer \displaystyle a such that \displaystyle r=s[\alpha]+a and 1\leq a<s, then

\displaystyle \frac{s}{a}=[a_1;a_2,\ldots,a_n].

If a=1 then a_1>1 and by the theorem 2, we have s/a has exactly two expansions are s/a=[a_1] and \displaystyle s/a=[a_1-1;1]. If \displaystyle a>1 then by the hypothesis of the induction (note that \displaystyle s and \displaystyle a are coprime integers), \displaystyle s/a has exactly two expansions are

\displaystyle \frac{s}{a}=[a_1;b_2,\ldots,b_n]=[a_1;b_2,\ldots,b_n-1,1],

where \displaystyle b_n>1. Therefore \displaystyle \alpha has exactly two expansions, and the claim is true for \displaystyle s. \Box

References

[1] https://nttuan.org/2020/01/14/divisibility/

[2] https://nttuan.org/2008/11/14/continued-fraction-expansion-of-rational-numbers/

Perfect rulers


Giả sử ta có một cái thước kẻ dài \displaystyle 6, trên đó đã đánh dấu các điểm \displaystyle 0, \displaystyle 1, \displaystyle 2, \displaystyle 3, \displaystyle 4, \displaystyle 5, \displaystyle 6. Sử dụng chiếc thước này ta có thể tạo mọi đoạn có độ dài thuộc \displaystyle [6], nhưng ta không cần đánh dấu trên thước nhiều điểm như thế để đạt được điều này. Ta có thể đánh dấu \displaystyle 0, \displaystyle 1, \displaystyle 4, 6 là đủ (đoạn độ dài 2 được đo giữa hai điểm 46, đoạn độ dài 3 được đo giữa 14, đoạn độ dài 4 được đo giữa 04, đoạn độ dài 5 được đo giữa 16). Vì C_4^2=6 nên hoàn cảnh này là hoàn hảo.

Bài toán. Cho một số nguyên n lớn hơn 4. Chứng minh rằng không tồn tại n số tự nhiên phân biệt a_1, a_2, \ldots, a_n sao cho mọi số nguyên dương không vượt quá C_n^2 đều có dạng a_i-a_j.

Lời giải. Giả sử ngược lại, tồn tại n số tự nhiên phân biệt a_1, a_2, \ldots, a_n sao cho mọi số nguyên dương không vượt quá C_n^2 đều có dạng a_i-a_j.

Xét đa thức \displaystyle A(z) = \sum_i z^{a_i}. Theo tính chất của các số a_1, a_2, \ldots, a_n, ta có

\displaystyle A(z) \cdot A\left(\frac{1}{z}\right)=\sum_{k=-C_n^2}^{C_n^2} z^k+n-1,\quad \forall z\in\mathbb{C}\setminus \{0\}.

Continue reading “Perfect rulers”

A nonnegative trigonometric polynomial


Bài toán. Cho số tự nhiên n. Chứng minh rằng với mỗi số thực x, ta có

\displaystyle\frac{1}{2}+\frac{\cos x}{2}+\frac{\cos 2x}{3}+\cdots+\frac{\cos nx}{n+1}\geq 0.

Lời giải. Dễ thấy khi \displaystyle n<3 thì khẳng định là đúng. Bây giờ ta xét \displaystyle n\geq 3. Vế trái là hàm số chẵn, tuần hoàn với chu kỳ \displaystyle 2\pi, và bất đẳng thức đúng với \displaystyle x=0. Vì thế ta chỉ cần chứng minh bất đẳng thức khi \displaystyle 0<x\leq \pi. Sử dụng số phức ta chứng minh được kết quả sau:

Bổ đề. \displaystyle \frac{1}{2}+\sum_{k=1}^n\cos kx=\frac{\sin (2n+1)\frac{x}{2}}{2\sin \frac{x}{2}}, và \displaystyle \sum_{k=0}^n\frac{\sin (2k+1)\frac{x}{2}}{2\sin\frac{x}{2}}=\frac{\sin^2(n+1)\frac{x}{2}}{2\sin^2 \frac{x}{2}}.

Gọi vế trái của bất đẳng thức là \displaystyle f_n(x). Dùng biến đổi Abel hai lần và  bổ đề, ta có  \displaystyle 2\sin^2(x/2)f_n(x)=\sum_{k=0}^{n-2}\frac{2\sin^2(k+1)(x/2)}{(k+1)(k+2)(k+3)}+\frac{\sin^2n(x/2)}{n(n+1)}

          \displaystyle +\frac{\sin (2n+1)(x/2)\sin (x/2)}{n+1}.\quad (1)

Nếu \displaystyle (2n+1)\frac{x}{2}\leq \pi thì dễ có điều cần chứng minh, bây giờ ta xét trường hợp còn lại, khi đó \displaystyle n+1>\frac{2\pi+x}{2x}.\quad (2).

Từ \displaystyle (1)\displaystyle n\geq 3, bằng cách dùng hai số hạng đầu trong tổng, ta có bất đẳng thức

\displaystyle 2\sin^2(x/2)f_n(x)\geq \frac{\sin^2(x/2)}{3}+\frac{\sin^2x}{12}-\frac{\sin (x/2)}{n+1}.

Vì thế, bài toán sẽ được giải nếu ta chứng minh được \displaystyle n+1\geq \frac{6}{\sin \frac{x}{2}(3+\cos x)}:=g(x).\quad (3)

Bây giờ ta xét hai trường hợp:

Trường hợp 1: \displaystyle 0<x\leq \pi/3.

Hàm số \displaystyle y=\sin t/t nghịch biến trên \displaystyle (0;\pi/6] nên \displaystyle \sin\frac{x}{2}\geq \frac{3x}{2\pi}, suy ra \displaystyle g(x)\leq \frac{4\pi}{x(3+\cos x)},\displaystyle \cos t\geq 1-\frac{t^2}{2} với mọi \displaystyle t không âm nên \displaystyle g(x)\leq \frac{8\pi}{x(8-x^2)}.\quad (4)

\displaystyle 0<x\leq \pi/3 nên \displaystyle x^2+2\pi x<8, suy ra \displaystyle \frac{8\pi}{x(8-x^2)}<\frac{2\pi+x}{2x}. Kết hợp với \displaystyle (2) ta có \displaystyle (3) đúng.

Trường hợp 2: \pi/3<x\leq \pi.

Bằng cách chuyển về biến \displaystyle t=\sin x/2 ta chứng minh được \displaystyle g(x)<4\leq n+1, và có \displaystyle (3) lại đúng.

A proof of Euler’s formula


Công thức Euler. \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}.

Các em học sinh hãy chứng minh công thức Euler bằng cách giải ba bài tập sau.

Bài 1. Chứng minh rằng với mỗi số nguyên dương n và số thực x\in\mathbb{R}\setminus \pi\mathbb{Z}, ta có

\displaystyle \frac{\sin (nx)}{(\sin x)^n}=\sum_{0\leq m\leq n/2}(-1)^mC_n^{2m+1}(\cot x)^{n-2m-1}.

Bài 2. Chứng minh rằng với mỗi số nguyên dương m, ta có \displaystyle \sum_{r=1}^m\frac{1}{\sin^2\frac{r\pi}{2m+1}}=\frac{2m(m+1)}{3}.

Bài 3. Chứng minh công thức Euler.

Phương pháp trên là của Cauchy.