Limit of a sequence


Giải tích thực là một nhánh của giải tích toán học nghiên cứu dáng điệu của dãy thực, chuỗi thực, và hàm giá trị thực. Một khái niệm trung tâm của giải tích thực là dãy hội tụ.

Định nghĩa 1. Một dãy số thực \left(u_{n}\right) hội tụ đến một số thực l, hay l là một giới hạn của dãy số (u_n), nếu với mỗi số thực dương \epsilon, tồn tại số nguyên dương N sao cho mỗi khi n \geq N, ta có \left|u_{n}-l\right|<\epsilon. Nếu một dãy số có một giới hạn ta nói nó là dãy hội tụ, nếu nó không có giới hạn, ta nói nó là dãy phân kỳ.

Để chỉ \left(u_{n}\right) hội tụ đến l, ta viết \lim u_{n}=l hoặc \lim \left(u_{n}\right) =l. Ký hiệu \displaystyle \lim _{n \rightarrow \infty} u_{n}=l cũng hay được dùng. Định nghĩa trên có thể gây rối đối với những bạn mới học giải tích, sau đây chúng tôi giới thiệu một định nghĩa khác, hình học hơn. Để làm điều này ta cần đến:

Định nghĩa 2. Cho số thực l và số thực \epsilon>0, tập

U_{\epsilon}(l)=\{x \in \mathbb{R}:|x-l|<\epsilon\} được gọi là \epsilon-lân cận của l.

Để ý rằng U_{\epsilon}(l) gồm tất cả các điểm trên trục số cách điểm l một khoảng bé hơn \epsilon. Nói cách khác, U_{\epsilon}(l) là một khoảng có tâm tại l và bán kính \epsilon.

Định nghĩa 3. Một dãy số thực \left(u_{n}\right) hội tụ đến một số thực l, hay l là một giới hạn của dãy số (u_n), nếu với mỗi \epsilon-lân cận U_{\epsilon}(l) của l, có một vị trí trong dãy mà từ đó trở đi, mọi số hạng của dãy đều thuộc U_{\epsilon}(l). Nói cách khác, mỗi \epsilon-lân cận của l đều chứa hầu hết (chỉ trừ một số hữu hạn) các số hạng của dãy (u_n).

Số N nói chung phụ thuộc vào \epsilon. Khi \epsilon càng nhỏ có thể N càng lớn. Định nghĩa giới hạn của một dãy số thực được sử dụng để kiểm tra xem một số thực l có là giới hạn của dãy hay không, nó không cho ta cách xác định giới hạn của dãy.

Ví dụ 1. Với mọi số thực a, dãy hằng a,a,a,\ldots hội tụ đến a.

Lời giải. Xét một số thực a. Ta phải chứng minh \lim u_n=a, trong đó (u_n)_{n\geq 1} là dãy số xác định bởi u_n=a với mọi số nguyên dương n. Với một số thực dương \epsilon bất kỳ, chọn N=1, ta có \mid u_n-a\mid =\mid a-a\mid =0<\epsilon,\quad\forall n\geq N. Từ đây ta có điều cần chứng minh. \Box

Ví dụ 2. Chứng minh rằng \lim\dfrac{1}{\sqrt{n}}=0.

Lời giải. Ta phải chứng minh \lim u_n=0, trong đó (u_n)_{n\geq 1} là dãy số xác định bởi u_n=\dfrac{1}{\sqrt{n}} với mọi số nguyên dương n. Với một số thực dương \epsilon bất kỳ, chọn N=2+[1/\epsilon^2], ta có \mid u_n-0\mid =\frac{1}{\sqrt{n}}<\epsilon,\quad\forall n\geq N. Từ đây ta có điều cần chứng minh. \Box

Ví dụ 3. Chứng minh rằng \lim\dfrac{n+1}{n}=1.

Lời giải. Ta phải chứng minh \lim u_n=1, trong đó (u_n)_{n\geq 1} là dãy số xác định bởi u_n=\dfrac{n+1}{{n}} với mọi số nguyên dương n. Với một số thực dương \epsilon bất kỳ, chọn N=2+[1/\epsilon], ta có \mid u_n-1\mid =\frac{1}{{n}}<\epsilon,\quad\forall n\geq N. Từ đây ta có điều cần chứng minh. \Box

Continue reading “Limit of a sequence”

The sum of the reciprocals of the primes


Với mỗi số nguyên dương n, ký hiệu p_n là số nguyên tố thứ n trong dãy tăng tất cả các số nguyên tố. Như vậy p_1=2, p_2=3, p_3=5,…

Trong bài này chúng tôi sẽ giới thiệu một chứng minh của kết quả sau:

Định lý. Chuỗi \displaystyle \frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}+\ldots là một chuỗi phân kỳ.

Chứng minh. Giả sử ngược lại, khi đó với mỗi số nguyên dương k, chuỗi \displaystyle\sum_{m=k}^{+\infty}\frac{1}{p_m} là một chuỗi hội tụ, gọi S_k là tổng của nó. Vì \lim S_k=0 nên tồn tại số nguyên k sao cho \displaystyle S_{k+1}<\frac{1}{2}. Đặt Q=p_1p_2\ldots p_k và xét các số 1+nQ\, (n=1,2,\ldots). Mỗi số trong dãy này đều không có ước nguyên tố thuộc \{p_1, p_2, \ldots, p_k\}, do đó với mỗi số nguyên dương r, tồn tại số nguyên dương K đủ lớn để

\displaystyle\sum_{n=1}^r\frac{1}{1+nQ}\leq\sum_{t=1}^{K}S_{k+1}^t<1.

Điều này không thể xảy ra do chuỗi \displaystyle \sum_{n=1}^{+\infty}\frac{1}{1+nQ} là một chuỗi phân kỳ. \Box

Tham khảo

[1] https://nttuan.org/2018/12/30/series/

[2] https://en.wikipedia.org/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes

Continued fraction expansion of irrational numbers


In this section we use continued fractions for expansion of irrational numbers.

Theorem 1. Let \displaystyle (x_n)_{n\geq 0} be a sequence of intergers with \displaystyle x_i>0 for every \displaystyle i>0. Then the sequence \displaystyle (p_n/q_n)_{n\geq 0} is a convergent sequence, and the its limit is an irrational number. We denote this limit by \displaystyle [x_0;x_1,x_2,\ldots].

Proof. From [1] we have \displaystyle q_1\geq q_0=1>0 and for all \displaystyle n>1, \displaystyle q_n=x_nq_{n-1}+q_{n-2}, hence by induction on \displaystyle n, \displaystyle q_{n+1}>q_n for every \displaystyle n\geq 1. Therefore \displaystyle\lim_{n\to \infty}q_n=\infty.

By the Proposition 4 in [1], for all \displaystyle n\geq 0,

\displaystyle \frac{p_n}{q_n}-\frac{p_{n+1}}{q_{n+1}}=\frac{(-1)^{n-1}}{q_nq_{n+1}},\quad\quad (1)

hence \displaystyle \frac{p_n}{q_n}-\frac{p_{n+2}}{q_{n+2}}=\frac{(-1)^{n-1}(q_{n+2}-q_n)}{q_nq_{n+1}q_{n+2}},\quad \forall n\geq 0. Therefore

\displaystyle \frac{p_1}{q_1}>\frac{p_3}{q_3}>\frac{p_5}{q_5}>\ldots>\frac{p_0}{q_0}

and

\displaystyle \frac{p_0}{q_0}<\frac{p_2}{q_2}<\frac{p_4}{q_4}<\ldots<\frac{p_1}{q_1},

hence \displaystyle (p_{2n}/q_{2n})_{n\geq 0} and \displaystyle (p_{2n+1}/q_{2n+1})_{n\geq 0} are convergent sequences. By (1) and \displaystyle q_n\to\infty we have

\displaystyle\lim_{n\to\infty}\frac{p_{2n}}{q_{2n}}=\lim_{n\to\infty}\frac{p_{2n+1}}{q_{2n+1}}, so \displaystyle (p_n/q_n)_{n\geq 0} is a convergent sequence.

Now we prove \displaystyle \displaystyle \alpha:=\lim_{n\to\infty}\frac{p_n}{q_n} is an irrational number. We have

\displaystyle \frac{p_{2m}}{q_{2m}}<\alpha<\frac{p_{2n+1}}{q_{2n+1}},\quad\forall m,n\geq 0.

Thus, by (1),

\displaystyle\left|\alpha-\frac{p_{2n}}{q_{2n}}\right|\leq \frac{1}{q_{2n}q_{2n+1}}<\frac{1}{q_{2n}^2},\quad\forall n\geq 1.

By the Proposition 2 in [1], \displaystyle p_{2n} and \displaystyle q_{2n} are coprime integers for every \displaystyle n\geq 1, hence there are infinite rational numbers \displaystyle r/s, with \displaystyle s>0 and \displaystyle (r,s)=1, such that

\displaystyle \left|\alpha-\frac{r}{s}\right| <\frac{1}{s^2}.\quad\quad (2)

Assume that \displaystyle \alpha is rational and write \displaystyle \alpha=p/q, where \displaystyle p and \displaystyle q>0 are coprime integers. For all positive integers \displaystyle s, at most two integers \displaystyle r satisfy the equation (2), hence there are coprime integers \displaystyle r_0 and \displaystyle s_0>q such that

\displaystyle\left|\frac{p}{q}-\frac{r_0}{s_0}\right| <\frac{1}{s_0^2}.

From the inequality we have \displaystyle \mid ps_0-qr_0\mid <1, hence \displaystyle ps_0=qr_0, a contradiction. Therefore \displaystyle \alpha is an irrational number. \Box

Theorem 2. Let \displaystyle \alpha be an irrational number. Then there is a unique sequence of integers \displaystyle (a_n)_{n\geq 0} such that

(1) \displaystyle a_i>0 for every \displaystyle i>0.

(2) \displaystyle \alpha =[a_0;a_1,a_2,\ldots].

Proof. In this proof, \displaystyle [x] is the integer part of \displaystyle x. Because \displaystyle \alpha is an irrational number, we have \displaystyle [\alpha]<\alpha<[\alpha]+1, hence there is a real number \displaystyle u_1>1 such that

\displaystyle \alpha=[\alpha]+\frac{1}{u_1}.

Because \displaystyle \alpha is an irrational and \displaystyle [\alpha] is an integer, \displaystyle u_1 is an irrational number. Hence there is an irrational number \displaystyle u_2>1 such that

\displaystyle u_1=[u_1]+\frac{1}{u_2},

and so on. Therefore we have real numbers \displaystyle u_0:=\alpha, u_1>1, \displaystyle u_2>1, \displaystyle \ldots such that \displaystyle u_i is irrationals for every \displaystyle i>0 and

\displaystyle u_k=[u_k]+\frac{1}{u_{k+1}},\quad\forall k\geq 0.

We claim that \displaystyle \alpha=[[u_0];[u_1],[u_2],\ldots]. Fix a \displaystyle k>2. We have

\displaystyle \alpha=[[u_0];[u_1],\ldots, [u_k],u_{k+1}].

Hence, by Proposition 4 in [1],

\displaystyle \left|\alpha-\frac{p_k}{q_k}\right|=\frac{1}{q_k(u_{k+1}q_{k}+q_{k-1})}<\frac{1}{q_k^2},

so \displaystyle \lim_{n\to\infty}\frac{p_n}{q_n}=\alpha. Now assume that

\displaystyle \alpha =[a_0;a_1,a_2,\ldots]=[b_0;b_1,b_2,\ldots],

where \displaystyle (a_n)_{n\geq 0} and \displaystyle (b_n)_{n\geq 0} are two sequences of integers such that \displaystyle a_i>0 and \displaystyle b_i>0 for every \displaystyle i>0.

Because

\displaystyle [a_0;a_1,a_2,\ldots,a_{n}]=a_0+\frac{1}{[a_1;a_2,\ldots,a_n]},\quad\forall n\geq 0,

we have

\displaystyle [a_0;a_1,a_2,\ldots]=a_0+\frac{1}{[a_1;a_2,\ldots]}.

Hence \displaystyle a_0=b_0=[\alpha] and \displaystyle [a_1;a_2,a_3,\ldots] = [b_1;b_2,b_3,\ldots]. Similarly, \displaystyle a_1=b_1 and

\displaystyle [a_2;a_3,a_4,\ldots] = [b_2;b_3,b_4,\ldots],

and so on. Therefore \displaystyle a_i=b_i for every i. \Box

The equality in the theorem is called an expansion of \displaystyle \alpha into a infinite continued fraction. In that expansion we will call \displaystyle [a_0;a_1,a_2,\ldots,a_i] is the \displaystyle i-th convergent of the continued fraction, or \displaystyle i-th convergent of \displaystyle \alpha. The theorem says that for every irrational number has an expansion into a infinite continued fraction, and this expansion is unique.

Example 1. \displaystyle \sqrt{2}=[1;2,2,\ldots].

Example 2. The golden ratio \displaystyle\varphi:=\frac{1+\sqrt{5}}{2}=[1;1,1,\ldots].

Example 3. \displaystyle e=[2;1,2,1,1,4,1,1,6,1,1,8,\ldots].

A sequence \displaystyle (a_n)_{n\geq 0} is called eventually periodic if \displaystyle a_{n+T}=a_n for some positive integer \displaystyle T and sufficiently large \displaystyle n. A real number is called quadratic irrational number, if there is a polynomial \displaystyle P(x) is of degree two with rational coefficients such that \displaystyle P(x) is an irreducible polynomial (see [3]) over the rational numbers and \displaystyle \alpha is a root of \displaystyle P(x).

Theorem 3. Let \displaystyle \alpha be an irrational number and \displaystyle \alpha =[a_0;a_1,a_2,\ldots] is the expansion of \displaystyle\alpha into a infinite continued fraction. Then \displaystyle (a_n)_{n\geq 1} is eventually periodic if and only if \displaystyle \alpha is a quadratic irrational.

References

[1] https://nttuan.org/2008/10/12/continued-fractions-the-basics/

[2] https://nttuan.org/2008/11/14/continued-fraction-expansion-of-rational-numbers/

[3] https://nttuan.org/2009/01/11/poly02/

Least upper bound property


Một tập \displaystyle A \subset\mathbb{R} được gọi là bị chặn trên nếu tồn tại \displaystyle b \in \mathbb{R} sao cho \displaystyle a \leq b với mọi \displaystyle a \in A. Số \displaystyle b được gọi là một cận trên của \displaystyle A. Tương tự, tập \displaystyle A bị chặn dưới nếu tồn tại một cận dưới \displaystyle l \in \mathbb{R} thỏa mãn \displaystyle l \leq a với mọi \displaystyle a \in A. Tập \displaystyle A được gọi là bị chặn nếu nó bị chặn trên và bị chặn dưới.

Bài tập 1. Tìm một tập hợp \displaystyle A các số thực sao cho:

(1) \displaystyle A bị chặn trên.

(2) \displaystyle A bị chặn dưới.

(3) \displaystyle A không bị chặn trên và không bị chặn dưới. \Box

Định nghĩa 1. Một số thực \displaystyle s được gọi là cận trên đúng của \displaystyle A \subset \mathbb{R} nếu nó thỏa mãn đồng thời hai điều kiện:

(1) \displaystyle s là một cận trên của \displaystyle A.

(2) nếu \displaystyle b là một cận trên của \displaystyle A thì \displaystyle s \leq b.

Cận trên đúng cũng thường được gọi là supremum của tập \displaystyle A, ký hiệu \displaystyle \sup A. Cận dưới đúng hay infimum của \displaystyle A được định nghĩa theo cách tương tự và được ký hiệu bởi \displaystyle \inf A. Mặc dù một tập có thể có vô hạn cận trên, nhưng nó chỉ có tối đa một cận trên đúng.  

Ví dụ 1. Cho tập hợp \displaystyle A=\left\{\frac{1}{n}: n \in \mathbb{N}^*\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}.

Tập A bị chặn trên và dưới. Ta thấy \sup A=1\inf A=0. \Box

Một bài học quan trọng rút ra từ ví dụ trên là \displaystyle \sup A\displaystyle \inf A có thể thuộc hoặc không thuộc tập \displaystyle A. Đây là điểm khác nhau cốt yếu giữa phần tử lớn nhất và cận trên đúng (hoặc phần tử nhỏ nhất và cận dưới đúng) của một tập số thực.

Định nghĩa 2. Một số thực \displaystyle a_{0} được gọi là phần tử lớn nhất của tập \displaystyle A, ký hiệu \displaystyle \max A, nếu \displaystyle a_{0} là một phần tử của \displaystyle A\displaystyle a_{0} \geq a với mọi \displaystyle a \in A. Tương tự, số \displaystyle a_{1} là phần tử nhỏ nhất của \displaystyle A, ký hiệu \displaystyle \min A, nếu \displaystyle a_{1} \in A\displaystyle a_{1} \leq a với mọi \displaystyle a \in A.

Ví dụ 2. Hai tập \displaystyle [0;2]\displaystyle (0;2) bị chặn, có cùng cận trên đúng \displaystyle 2, nhưng chỉ \displaystyle [0;2] có phần tử lớn nhất. Như vậy, cận trên đúng có thể tồn tại và không phải là phần tử lớn nhất, nhưng khi phần tử lớn nhất tồn tại, nó cũng là cận trên đúng. \Box

Mặc dù ta có thể thấy rằng không phải mọi tập hợp khác rỗng bị chặn trên nào đều có phần tử lớn nhất, nhưng tiên đề về tính đầy đủ khẳng định rằng mọi tập hợp như vậy đều có một cận trên đúng. Ta sẽ không chứng minh điều này. Tiên đề trong toán học là một giả định được chấp nhận, được sử dụng mà không cần chứng minh.

Tiên đề về tính đầy đủ. Mọi tập các số thực khác rỗng và bị chặn trên đều có cận trên đúng.

Từ tiên đề trên ta có thể chứng minh mọi tập số thực khác rỗng và bị chặn dưới đều có cận dưới đúng. Tiên đề không đúng với tập các số hữu tỷ.

Ví dụ 3. Tập \{r\in\mathbb{Q}\mid r^2<2\} bị chặn trên và khác rỗng nhưng không có cận trên đúng thuộc \mathbb{Q}. \Box

Hai định lý sau cho một định nghĩa tương đương của cận trên đúng và cận dưới đúng.

Continue reading “Least upper bound property”