The number of prime factors of a natural number


Mỗi năm, khi được mời dạy cho đội tuyển Việt Nam tham dự Olympic Toán quốc tế (IMO), tôi thường mang đến cho các em vài bài toán rất khó, và hy vọng một lời giải thanh nhã từ các thành viên của đội tuyển. Dưới đây là một bài cho đội tuyển IMO năm 2021.

Bài toán. Với mỗi số nguyên dương n, gọi \omega (n) là số ước nguyên tố của n. Chứng minh rằng tồn tại số nguyên dương n sao cho \omega (n+1)<\omega (n+2)<\ldots <\omega (n+100).

Lời giải. Với hai hàm f(x)g(x) từ tập các số nguyên dương đến tập các số thực dương ta viết f=o(g) nếu f/g\to 0 khi x\to\infty. Thay 100 bởi k > 2. Gọi A là một số nguyên dương phụ thuộc k mà ta sẽ chọn sau. Giả sử  q_1<q_2<\cdots<q_m<\cdots là dãy tất cả các số nguyên tố lớn hơn k. Với j=1, \ldots, k, đặt T_j= j(j-1) / 2\displaystyle M_j=\prod_{\ell=T_j A+1}^{T_{j+1} A} q_{\ell}. Đặt \displaystyle M=\prod_{j=1}^k M_j và gọi N là số nguyên dương nhỏ nhất sao cho M_j chia hết N+j với mỗi j\in [k]. Ta có ngay N+k<M. Thật vậy, nếu không thì N=M-i với i \in [k], lấy j \in [k]\setminus \{i\}, ta có M_j \mid N+j=M+(j-i); suy ra M_j \mid j-i, vô lý.

Xét số n=M \lambda+N, ở đây \lambda là số nguyên dương mà \lambda \in[M, 2 M]. Ta có

\displaystyle n+j=M \lambda+(N+j)=M_j\left(\left(M / M_j\right) \lambda+(N+j) / M_j\right), \quad j=1, \ldots, k .

Khi đặt A_j=(N+j) / M_jB_j=M / M_j, ta có

\displaystyle j A=T_{j+1} A-T_j A=\omega\left(M_j\right) \leq \omega(n+j) \leq j A+\omega\left(B_j \lambda+A_j\right),

suy ra nếu \lambda thỏa mãn \displaystyle \omega\left(B_j \lambda+A_j\right)<A, \quad \forall j=1, \ldots, k-1,\quad (1) thì

\displaystyle jA \leq\omega(n+j)<j A+A \leq \omega(n+j+1), \quad\forall  j=1, \ldots, k-1,

và bài toán được giải. Vậy sẽ là đủ nếu ta chỉ ra có A để tồn tại \lambda thỏa mãn (1).

Với mỗi j<k, ta có (A_j,B_j)=1. Thật vậy, xét một chỉ số j<k. Ta có

\displaystyle B_j=M / M_j=\prod_{\substack{1 \leq \ell \leq k \\ \ell \neq j}} M_{\ell}.

Nếu có số nguyên tố p \mid\left(A_j, B_j\right), tồn tại chỉ số \ell \neq j sao cho p \mid M_{\ell}. Vì M_{\ell} \mid N+\ell nên p \mid N+\ell. Nhưng p\left|A_j\right| N+j; suy ra p \mid(N+\ell)-(N+j)=(\ell-j), và 1 \leq|\ell-j|<k. Do đó p<k, điều này không thể xảy ra do mọi ước nguyên tố của M lớn hơn k.

Bổ đề. Với mỗi số nguyên dương x, ký hiệu \tau (x) là số ước dương của x. Khi đó

\displaystyle \sum_{\lambda \in[M, 2 M]} \tau\left(B_j \lambda+A_j\right)\leq 4 M(\ln M+1),\quad\forall j<k.

Chứng minh. Xét một chỉ số j<k. Vì N+k <M nên với mỗi số nguyên \lambda\in [M,2M], ta có

\displaystyle B_j \lambda+A_j \leq \frac{1}{M_j}(M \lambda+N+k)<\frac{2 M \lambda}{M_j} \leq \frac{4 M^2}{M_j}<M^2,

suy ra

\displaystyle \tau\left(B_j \lambda+A_j\right) \leq 2 \sum_{\substack{d \mid B_j \lambda+A_j \\ d \leq M}} 1.

Do đó

\displaystyle \sum_{\lambda \in[M, 2 M]} \tau\left(B_j \lambda+A_j\right)

\displaystyle \leq 2 \sum_{\lambda \in[M, 2 M]} \sum_{\substack{d \mid B_j \lambda+A_j \\ d \leq M}} 1 = 2 \sum_{d \leq M} \sum_{\substack{\lambda \in[M, 2 M] \\ B_j \lambda+A_j \equiv 0 \\ (\bmod d)}} 1

\leq 2 \sum_{d \leq M}\left(\left\lfloor\left.\frac{M}{d} \right\rvert\,+1\right) \leq 4 M \sum_{d \leq M} \frac{1}{d}\right. \leq 4 M(\ln M+1) . \Box

Continue reading “The number of prime factors of a natural number”

Absolute convergence


Cho \displaystyle (u_n)_{n\geq 1} là một dãy các số thực. Chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n được gọi là hội tụ tuyệt đối nếu chuỗi \displaystyle\sum_{n=1}^{+\infty}\mid u_n\mid hội tụ. Chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n được gọi là hội tụ có điều kiện nếu nó hội tụ nhưng không hội tụ tuyệt đối. Trong bài trước (xem [1]) ta đã biết chuỗi điều hòa thay phiên là một chuỗi hội tụ có điều kiện. Theo tiêu chuẩn Cauchy, mọi chuỗi hội tụ tuyệt đối đều là chuỗi hội tụ.

Khi làm việc với các chuỗi hội tụ, ta thường muốn việc nhóm vài số hạng liên tiếp hay sắp xếp lại các số hạng sẽ không ảnh hưởng đến sự hội tụ hoặc tổng của chuỗi. Không khó khăn lắm để thấy rằng việc nhóm các số hạng liên tiếp tạo ra một chuỗi hội tụ có tổng bằng tổng của chuỗi ban đầu. Ta có kết quả quan trọng sau liên quan đến sắp xếp các số hạng của chuỗi.

Định lý 1. Cho \displaystyle (u_n)_{n\geq 1} là một dãy các số thực sao cho chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n hội tụ tuyệt đối. Khi đó với mọi song ánh \displaystyle\sigma :\mathbb{N}^*\to\mathbb{N}^*, chuỗi \displaystyle\sum_{n=1}^{+\infty}u_{\sigma (n)} hội tụ và tổng của nó bằng tổng của chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n.

Chứng minh. Gọi \displaystyle S là tổng của chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n, và \displaystyle\epsilon là một số thực dương bất kỳ. Khi đó tồn tại số nguyên dương \displaystyle m đủ lớn sao cho \displaystyle \mid S_m-S\mid<\epsilon/2

\displaystyle\sum_{k=m+1}^{+\infty}\mid u_k\mid <\epsilon/2,

trong đó \displaystyle (S_n)_{n\geq 1} là dãy các tổng riêng của chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n.

Xét một song ánh \displaystyle\sigma :\mathbb{N}^*\to\mathbb{N}^*. Gọi \displaystyle (T_n)_{n\geq 1} là dãy các tổng riêng của chuỗi \displaystyle\sum_{n=1}^{+\infty} u_{\sigma (n)}, và \displaystyle N là một số nguyên dương sao cho các số \displaystyle 1, \displaystyle 2, \displaystyle \ldots, \displaystyle m đều thuộc tập hợp \displaystyle\{\sigma (1),\sigma (2),\ldots,\sigma (N)\}. Với số nguyên \displaystyle n>N, ta có

\displaystyle \mid T_n-S\mid\leq \mid T_n-S_m\mid +\mid S_m-S\mid

\displaystyle\leq \sum_{k=m+1}^{+\infty}\mid u_k\mid +\mid S_m-S\mid<\epsilon/2+\epsilon/2=\epsilon.

Suy ra \displaystyle T_n\to S và ta có điều phải chứng minh. \Box

Bây giờ giả sử \displaystyle (u_n)_{n\geq 1} là một dãy các số thực sao cho chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n hội tụ có điều kiện. Ta thấy có vô hạn số hạng của dãy là số dương, và có vô hạn số hạng của dãy là số âm. Gọi \displaystyle (d_i)_{i\geq 1}(a_i)_{i\geq 1} lần lượt là dãy con tất cả các số hạng không âm và dãy con tất cả các số hạng âm của dãy \displaystyle (u_n)_{n\geq 1}. Hai chuỗi \displaystyle\sum_{n=1}^{+\infty}d_n\displaystyle\sum_{n=1}^{+\infty}a_n đều phân kỳ. Cố định một số thực \displaystyle \alpha. Lấy ra khỏi \displaystyle (d_i) một vài số hạng đầu có tổng lớn hơn \displaystyle\alpha, sau đó lấy ra khỏi \displaystyle (a_i) một vài số hạng đầu để tổng các số được chọn (gồm cả những số được chọn từ \displaystyle (d_i)) nhỏ hơn \displaystyle \alpha. Tiếp theo, trong dãy \displaystyle (d_i) còn lại, lấy vài số hạng đầu để tổng các số được lấy (gồm cả những số được chọn từ các bước trước) lớn hơn \displaystyle\alpha, sau đó trong dãy \displaystyle (a_i) còn lại, lấy một vài số hạng đầu để tổng các số được lấy (gồm cả những số được chọn từ các bước trước) nhỏ hơn \displaystyle \alpha. Cứ tiếp tục như vậy ta có một chuỗi có tổng bằng \displaystyle\alpha. Ta đã mô tả chứng minh của kết quả sau, chi tiết có trong [2].

Định lý 2 (Định lý chuỗi Riemann). Cho \displaystyle (u_n)_{n\geq 1} là một dãy các số thực sao cho chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n hội tụ có điều kiện. Khi đó với mỗi số thực \displaystyle\alpha, có song ánh \displaystyle \sigma :\mathbb{N}^*\to\mathbb{N}^* sao cho chuỗi \displaystyle \sum_{n=1}^{+\infty}u_{\sigma (n)} hội tụ và tổng của nó bằng \displaystyle \alpha.

Tài liệu tham khảo

[1] https://nttuan.org/2018/12/30/series/

[2] Walter Rudin. Principles of Mathematical Analysis. McGraw Hill, 1976.

Series


Cho \displaystyle (u_n)_{n\geq 1} là một dãy các số thực. Tổng hình thức

\displaystyle u_1+u_2+u_3+\cdots,

ký hiệu \displaystyle\sum_{n=1}^{+\infty}u_n, được gọi là một chuỗi. Với mỗi số nguyên dương \displaystyle n, số

\displaystyle S_n:=u_1+u_2+\cdots+u_n=\sum_{i=1}^nu_i

được gọi là tổng riêng thứ \displaystyle n của chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n, và \displaystyle u_n được gọi là số hạng tổng quát của chuỗi. Nếu dãy các tổng riêng \displaystyle (S_n)_{n\geq 1} hội tụ đến \displaystyle S, ta nói chuỗi \displaystyle\sum_{n=1}^{+\infty}u_nchuỗi hội tụ\displaystyle S được gọi là tổng của chuỗi, ký hiệu \displaystyle\sum_{n=1}^{+\infty}u_n=S.

Mặc dù \displaystyle S là tổng của chuỗi, nó là giới hạn của dãy các tổng riêng, và nó không được hình thành bởi việc cộng liên tiếp các số hạng của dãy số \displaystyle (u_n)_{n\geq 1}.

Ví dụ 1. Chuỗi \displaystyle\sum_{n=1}^{+\infty}\frac{1}{n(n+1)} là một chuỗi hội tụ và tổng của nó bằng \displaystyle 1. \Box

Ví dụ 2. Chuỗi \displaystyle\sum_{n=1}^{+\infty}\frac{1}{n^2} là một chuỗi hội tụ vì dãy các tổng riêng của chuỗi này là một dãy số tăng và bị chặn trên bởi \displaystyle 2. \Box

Ví dụ 3. Xét chuỗi điều hòa luân phiên \displaystyle\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{n}. Với mỗi số nguyên dương \displaystyle n, ta có

\displaystyle S_{2n}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)

\displaystyle S_{2n+1}=\frac{1}{1}-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\cdots-\left(\frac{1}{2n}-\frac{1}{2n+1}\right).

Do đó \displaystyle (S_{2n})_{n\geq 1} là một dãy số tăng còn \displaystyle (S_{2n+1})_{n\geq 1} là một dãy số giảm. Mặt khác, với mỗi số nguyên dương \displaystyle n,

\displaystyle 0<S_{2n}<S_{2n+1}=S_{2n}+\frac{1}{2n+1}<1,

do đó \displaystyle (S_{2n})_{n\geq 1}\displaystyle (S_{2n+1})_{n\geq 1} là hai dãy hội tụ có cùng một giới hạn. Suy ra \displaystyle (S_n)_{n\geq 1} hội tụ, và bởi vậy chuỗi điều hòa luân phiên là chuỗi hội tụ. \Box

Nếu dãy tổng riêng \displaystyle (S_n)_{n\geq 1} phân kỳ, ta nói chuỗi \displaystyle\sum_{n=1}^{+\infty}u_nchuỗi phân kỳ. Vì \displaystyle u_n=S_n-S_{n-1} với mọi \displaystyle n>1, nên ta có kết quả

Định lý 1. Nếu chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n hội tụ thì \displaystyle\lim_{n\to +\infty} u_n=0.

Ví dụ sau chứng tỏ điều kiện \displaystyle u_n\to 0 chỉ là điều kiện cần để chuỗi hội tụ.

Ví dụ 4. Chuỗi điều hòa \displaystyle\sum_{n=1}^{+\infty}\frac{1}{n} là chuỗi phân kỳ mặc dù \displaystyle\lim_{n\to +\infty} \frac{1}{n}=0. Thật vậy, giả sử chuỗi hội tụ và \displaystyle S là tổng của nó. Khi đó

\displaystyle S=\left(\frac{1}{1}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)+\cdots

\displaystyle >\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)+\cdots

\displaystyle =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots.

Suy ra S>S, vô lý. \Box

Áp dụng tiêu chuẩn Cauchy cho dãy các tổng riêng ta có một điều kiện cần và đủ để chuỗi hội tụ.

Định lý 2 (Tiêu chuẩn Cauchy). Cho \displaystyle (u_n)_{n\geq 1} là một dãy các số thực. Khi đó chuỗi \displaystyle\sum_{n=1}^{+\infty}u_n hội tụ khi và chỉ khi với mỗi \displaystyle \epsilon >0, tồn tại số nguyên dương \displaystyle N để

\displaystyle \left|\sum_{i=m}^nu_i\right|<\epsilon

nếu n\geq m\geq N.

Ở một số chỗ, để cho thuận tiện, ta cũng xét chuỗi \displaystyle \displaystyle \sum_{n=0}^{+\infty}u_n. Khi đó các khái niệm tương ứng được nêu theo cách tương tự.

Định lý 3. Với số thực \displaystyle q, xét chuỗi \displaystyle \sum_{n=0}^{+\infty}q^n (quy ước \displaystyle 0^0=1). Nếu \displaystyle \mid q\mid <1 thì chuỗi hội tụ và

\displaystyle \sum_{n=0}^{+\infty}q^n=\frac{1}{1-q}.

Nếu \displaystyle \mid q\mid \geq 1 thì chuỗi phân kỳ.

Subconvex sequences


Trong bài này tôi sẽ giới thiệu một lớp dãy hay gặp trong các đề thi chọn học sinh giỏi các cấp. Chứng minh định lí chính trong bài là của Adrian Sandovichi. Để theo dõi cho dễ, các em học sinh nên đọc lại bài sau:

https://nttuan.org/2023/09/15/limit-of-a-sequence/

Định nghĩa. Cho dãy số thực không âm (x_n)_{n\geq 1} và số nguyên k>0. Dãy số (x_n)_{n\geq 1} được gọi là một dãy lồi dưới cấp k nếu có các số thực \alpha_1, \alpha_2,\ldots, \alpha_k sao cho hai điều kiện sau được thỏa mãn đồng thời:

(1) \alpha_i\in (0;1),\quad \forall i=\overline{1,k}\alpha_1+\alpha_2+\cdots+\alpha_k\leq 1.

(2) x_{n+k}\leq \alpha_1x_{n+k-1}+\alpha_2x_{n+k-2}+\cdots+\alpha_kx_n,\quad \forall n\geq 1.

Mọi dãy lồi dưới cấp 1 đều có giới hạn bằng 0. Trong định nghĩa trên, nếu dãy số (x_n) có giới hạn hữu hạn và \sum\alpha_i<1 thì \lim x_n=0.

Định lí. Cho số nguyên dương k. Khi đó mọi dãy lồi dưới cấp k đều có giới hạn hữu hạn.

Chứng minh. Gọi (x_n) là một dãy lồi dưới cấp k. Khi đó tồn tại các số thực \alpha_1, \alpha_2,\ldots, \alpha_k sao cho hai điều kiện sau được thỏa mãn đồng thời:

(1) \alpha_i\in (0;1),\quad \forall i=\overline{1,k}\alpha_1+\alpha_2+\cdots+\alpha_k\leq 1.

(2) x_{n+k}\leq \alpha_1x_{n+k-1}+\alpha_2x_{n+k-2}+\cdots+\alpha_kx_n,\quad \forall n\geq 1.

Xét dãy số (y_n)_{n\geq 1} xác định bởi \displaystyle y_n=\max_{0\leq i\leq k-1}x_{n+i} với mọi số nguyên n>0. Ta thấy (y_n)_{n\geq 1} là một dãy số không tăng và bị chặn dưới bởi 0 nên nó có giới hạn hữu hạn không âm, đặt L=\lim y_n. Ta sẽ chứng minh (x_n) có giới hạn hữu hạn và L=\lim x_n.

Với mọi số thực dương \epsilon, cố định nó.

Đặt \displaystyle t=\min\left\{1;\frac{\alpha_1^k}{2^k(1-\alpha_1)}\right\}.t>0L là giới hạn của dãy số không tăng (y_n) nên tồn tại số nguyên dương n_{\epsilon} để

x_n\leq y_n<L+t\epsilon\leq L+\epsilon,\quad \forall n\geq n_{\epsilon}.\quad (*)

Bây giờ ta chứng minh x_m>L-\epsilon,\quad \forall m\geq k+n_{\epsilon}.\quad (**)

Giả sử tồn tại số nguyên dương m\geq k+n_{\epsilon} sao cho x_m\leq L-\epsilon.

Mệnh đề. \displaystyle x_{m+p}\leq L-\epsilon\left(\frac{\alpha_1}{2}\right)^p,\quad \forall p=\overline{1,k-1}.

Chứng minh. Ta chứng minh bằng quy nạp theo p. Với p=1, từ (*) và cách chọn t ta có

x_{m+1} \leq \alpha_1x_m+\alpha_2x_{m-1}+\cdots+\alpha_kx_{m-k+1}

\leq\alpha_1x_m+(\alpha_2+\cdots+\alpha_k)(L+t\epsilon)

\leq\alpha_1(L-\epsilon)+(1-\alpha_1)(L+t\epsilon)

\leq L-a_1\epsilon+\left(\frac{\alpha_1}{2}\right)^k\epsilon

\leq L-a_1\epsilon+\left(\frac{\alpha_1}{2}\right)^1\epsilon

=L-\epsilon\left(\frac{\alpha_1}{2}\right).

Suy ra khẳng định đúng với p=1. Giả sử khẳng định đúng đến p<k-1, ta chứng minh nó đúng với p+1. Theo giả thiết quy nạp, (*) và cách chọn t ta có

x_{m+p+1} \leq \alpha_1x_{m+p}+\alpha_2x_{m+p-1}+\cdots+\alpha_kx_{m+p-k+1}

\leq\alpha_1\left(L-\epsilon\left(\frac{\alpha_1}{2}\right)^p\right)+(1-\alpha_1)(L+t\epsilon)

=L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p+(1-\alpha_1)t\epsilon

\leq L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p+\left(\frac{\alpha_1}{2}\right)^k\epsilon

\leq L-a_1\epsilon \left(\frac{\alpha_1}{2}\right)^p +\left(\frac{\alpha_1}{2}\right)^{p+1}\epsilon

=L-\epsilon\left(\frac{\alpha_1}{2}\right)^{p+1}.

Suy ra khẳng định đúng với p+1. Theo nguyên lý quy nạp toán học, mệnh đề là đúng. \Box

Continue reading “Subconvex sequences”