Combinatorial Nullstellensatz


Trong bài này chúng tôi giới thiệu một chứng minh ngắn của định lý không điểm tổ hợp của Noga Alon, và sử dụng nó chứng minh định lý Cauchy – Davenport (xem [1]). Từ bây giờ, khi nói đến trường thì các bạn hiểu là nói đến \displaystyle \mathbb{C}, \displaystyle \mathbb{R}, \displaystyle \mathbb{Q}, hay \displaystyle \mathbb{Z}/p\mathbb{Z}.

Định lý 1 (N. Alon, 1999). Cho \displaystyle \mathbb{F} là một trường bất kỳ, và cho \displaystyle P\left(x_{1}, \ldots, x_{n}\right) là một đa thức trong \displaystyle \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]. Giả sử bậc của \displaystyle P\displaystyle \sum_{i=1}^{n} k_{i}, trong đó \displaystyle k_{i} là một số nguyên không âm, và hệ số của đơn thức \displaystyle x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}} trong \displaystyle P khác không. Khi đó với mỗi tập con \displaystyle A_{1}, \ldots, A_{n} của \displaystyle \mathbb{F} thỏa mãn \displaystyle \left|A_{i}\right| \geq k_{i}+1 với mỗi \displaystyle i=1,2, \ldots, n, tồn tại \displaystyle a_{1} \in A_{1}, \ldots, a_{n} \in A_{n} để \displaystyle P\left(a_{1}, \ldots, a_{n}\right) \neq 0.

Định lý trên được gọi là định lý không điểm tổ hợp, nó là một tổng quát của kết quả: Với mỗi đa thức khác không \displaystyle f(x) với hệ số thuộc một trường \displaystyle \mathbb F, số nghiệm của \displaystyle f trong \displaystyle \mathbb F không vượt quá \displaystyle \deg f.

Chứng minh (Mateusz Michalek). Khẳng định là đúng một cách hiển nhiên khi \displaystyle P là đa thức hằng, bây giờ ta xét trường hợp còn lại.

Quy nạp theo \displaystyle \deg P. Nếu \displaystyle \deg(P)=1 thì định lý là đúng. Giả sử \displaystyle \deg(P)>1\displaystyle P thỏa mãn các giả thiết của định lý nhưng kết luận là sai. Nghĩa là \displaystyle P(x)=0 với mọi \displaystyle x \in A_{1} \times \ldots \times A_{n}. Không mất tính tổng quát, giả sử \displaystyle k_{1}>0. Xét một \displaystyle a \in A_{1} và viết

\displaystyle P=\left(x_{1}-a\right) Q+R\quad \quad (1)

bằng cách sử dụng thuật toán chia. Xem (1) là một đẳng thức của các đa thức một biến \displaystyle x_{1} với hệ số thuộc \displaystyle \mathbb{F}\left[x_{2}, \ldots, x_{n}\right]. Vì bậc của \displaystyle R theo biến \displaystyle x_{1} là bé hơn \displaystyle \deg\left(x_{1}-a\right), đa thức \displaystyle R không chứa \displaystyle x_{1}. Từ giả thiết về \displaystyle P ta có \displaystyle Q phải có một đơn thức không bị triệt tiêu có dạng \displaystyle x_{1}^{k_{1}-1} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}

\displaystyle \deg(Q)=\sum_{i=1}^{n} k_{i}-1=\deg(P)-1.   

Lấy mỗi \displaystyle x \in\{a\} \times A_{2} \times \ldots \times A_{n} và thay vào (1). Vì \displaystyle P(x)=0 ta có \displaystyle R(x)=0. Nhưng \displaystyle R không chứa \displaystyle x_{1}, suy ra \displaystyle R cũng bằng không trên \displaystyle \left(A_{1}-\{a\}\right) \times A_{2} \times \ldots \times A_{n}.

Bây giờ thay mỗi \displaystyle x \in\left(A_{1}-\{a\}\right) \times A_{2} \times \ldots \times A_{n} vào (1). Vì \displaystyle x_{1}-a khác không, ta có \displaystyle Q(x)=0. Vậy là \displaystyle Q bằng không trên \displaystyle \left(A_{1}-\{a\}\right) \times A_{2} \times \ldots \times A_{n}, trái với giả thiết quy nạp. \Box

Một áp dụng đầu tiên là chứng minh ngắn của định lý Cauchy – Davenport trong lý thuyết số cộng tính. Định lý được chứng minh đầu tiên bởi Cauchy vào năm 1813 và bởi Davenport vào năm 1935. Cho \displaystyle A\displaystyle B là hai tập con khác rỗng của \displaystyle \mathbb{Z}/{p}\mathbb{Z} với \displaystyle \mid A\mid =a\displaystyle \mid B\mid =b. Hỏi tập

\displaystyle A+B:=\{a+b\mid (a,b)\in A\times B\}

có thể có ít nhất bao nhiêu phần tử?

Định lý 2 (Cauchy – Davenport). Cho số nguyên tố \displaystyle p và cho \displaystyle A\displaystyle B là hai tập con khác rỗng của \displaystyle \mathbb{Z}/{p}\mathbb{Z} với \displaystyle \mid A\mid =a\displaystyle \mid B\mid =b. Khi đó

\displaystyle |A+B|\geq\min \{p,a+b-1\}.

Chứng minh. Nếu \displaystyle a+b>p thì \displaystyle \mid A+B\mid =p. Thật vậy, với mỗi \displaystyle g\in \mathbb{Z}/{p}\mathbb{Z}, hai tập \displaystyle g-A\displaystyle B có giao khác rỗng vì \displaystyle a+b>p. Lấy \displaystyle h\in (g-A)\cap B ta có ngay \displaystyle h=b=g-a\quad (a\in A,b\in B), suy ra \displaystyle g=a+b\in A+B. Từ đây ta có \displaystyle |A+B|=p=\min \{p,a+b-1\}.

Bây giờ ta xét \displaystyle a+b\leq p và giả sử bất đẳng thức là sai. Gọi \displaystyle C là một tập có cỡ \displaystyle a+b-2 trong \displaystyle \mathbb{Z}/{p}\mathbb{Z} chứa \displaystyle A+B. Xét đa thức

\displaystyle f(x, y)=\prod_{c \in C}(x+y-c)

trên \displaystyle \mathbb{Z}/{p}\mathbb{Z}. Đây là một đa thức hai biến có bậc \displaystyle a+b-2. Ta sẽ chứng minh

\displaystyle \left[x^{a-1} y^{b-1}\right] f(x, y)=\left(\begin{array}{c}a+b-2 \\ a-1\end{array}\right) \not =0.

Để hình thành hệ số này khi khai triển \displaystyle f, ta chọn \displaystyle x đúng \displaystyle a-1 lần và \displaystyle y đúng \displaystyle b-1 lần trong \displaystyle a+b-2 thừa số. Như vậy ta có đẳng thức đầu. Hệ số nhị thức khác không là vì \displaystyle a+b-2<p\displaystyle p là số nguyên tố.

\displaystyle |A|=a\displaystyle |B|=b, định lý không điểm tổ hợp cho ta \displaystyle x \in A\displaystyle y \in B\displaystyle f(x, y) \neq 0. Điều này không thể xảy ra vì \displaystyle f đã được dựng để triệt tiêu trên mọi cặp \displaystyle (x, y) như vậy. \Box

Bài đọc thêm

[1] https://nttuan.org/2014/09/29/cauchy-davenport/

Z – K[x]


Các bạn học sinh chắc rất quen thuộc với cuốn từ điển ANH – VIỆT đúng không? Hôm nay tôi sẽ giới thiệu vài trang trong cuốn từ điển SỐ NGUYÊN – ĐA THỨC. Để theo bài cho dễ dàng các bạn nên đọc lướt qua các bài sau:

[1] https://nttuan.org/2023/06/30/poly01/

[2] https://nttuan.org/2023/07/14/divisibility/

[3] https://nttuan.org/2023/08/04/prime/


Mục đích của bài này là giới thiệu một số kết quả về đa thức tương tự với các kết quả trong số học sơ cấp (xem [2] và [3]), chẳng hạn như thuật toán chia, thuật toán Euclid, và định lí cơ bản của số học. Bởi vì chúng thực sự rất tương tự nên một số chứng minh sẽ bị bỏ qua, hoặc viết vắn tắt. Các em học sinh nên viết lại cẩn thận tất cả các chứng minh để hiểu thêm về đa thức.

Trong bài K\mathbb{C},\mathbb{R},\mathbb{Q}, hay \mathbb{F}_p.

Định lí 1 (Thuật toán chia). Cho fg là các phần tử của K[x] với g\neq 0. Khi đó tồn tại duy nhất cặp phần tử (q,r) của K[x] thỏa mãn f=q g+r,\deg (r)<\deg(g) hoặc r=0.

Chứng minh. Khẳng định là đúng một cách hiển nhiên nếu f=0 hoặc bậc của f bé hơn bậc của g. Bây giờ ta xét trường hợp còn lại và chứng minh nó bằng quy nạp theo bậc của f.

Nếu bậc của f bằng 0 thì bậc của g bằng 0 và khẳng định là đúng. Giả sử khẳng định đúng với mọi đa thức f có bậc bé hơn m. Xét một đa thức f có bậc m và một đa thức g khác không có bậc n\leq m. Viết f(x)=a_m x^m+\ldots+a_1 x+a_0g(x)=b_n x^n+\ldots+b_0.

Xét đa thức f_1(x)=f(x)-a_m b_n^{-1} x^{m-n} g(x). Ta có f_1 có bậc bé hơn m hoặc f_1=0 nên theo giả thiết quy nạp, ta có thể viết f_1=q_1 g+r, trong đó bậc của r bé hơn n hoặc r=0. Từ đây ta có f(x)=\left(q_1(x)+a_m b_n^{-1} x^{m-n}\right) g(x)+r(x). Bây giờ ta đi chứng minh phần còn lại, thương và dư là duy nhất. Giả sử f=q_1 g+r_1f=q_2 g+r_2. Khi đó \left(q_1-q_2\right) g=r_2-r_1. Nếu q_2-q_1 \neq 0 thì bậc của \left(q_2-q_1)\right) g không bé hơn bậc của g, trong khi bậc của r_2-r_1 bé hơn bậc của g, vô lý. Vậy q_1=q_2, và đương nhiên r_1=r_2. \Box

Định nghĩa 1. Cho hai đa thức không đồng thời bằng không fg với hệ số trong K. Một đa thức monic d với hệ số trong K được gọi là ước chung lớn nhất của fg nếu

(1) d là một ước của fg, và

(2) mỗi ước của fg cũng là một ước của d.

Ước chung lớn nhất của fg được ký hiệu bởi (f, g). Nếu (f, g)=1 thì ta nói fg nguyên tố cùng nhau.

Ước chung lớn nhất nếu có sẽ là duy nhất. Thật vậy, giả sử dd_1 cùng là ước chung lớn nhất của fg. Khi đó d \mid d_1d_1 \mid d, suy ra d=a d_1d_1=b d, do đó d=a b d. Từ đây ta có ab=1, suy ra ab đều có bậc không. Do đó d_1 bằng d nhân với một đa thức hằng, nhưng chúng cùng monic nên d=d_1. Định lí sau chứng tỏ ước chung lớn nhất tồn tại.

Định lí 2. Với các đa thức không đồng thời bằng không f, g \in K[x], ước chung lớn nhất tồn tại và có thể biểu diễn dưới dạng (f, g)=a f+b g, với a,b \in K[x].

Chứng minh. Xét tập hợp I=\{a f+b g \mid a, b \in K[x]\}. Tập hợp I chứa ít nhất một đa thức khác không nên tồn tại đa thức monic d thuộc I mà có bậc nhỏ nhất. Dễ chứng minh được d=(f, g). \Box

Thuật toán Euclid. Cho f, g \in K[x] là hai đa thức khác không. Dùng thuật toán chia ta có f=q g+r, trong đó \deg(r)<\deg(g) hoặc r=0. Nếu r=0 thì g chia hết f, do đó (f, g)=c g với c\in K. Nếu không, ta có tập các ước chung của fg bằng tập các ước chung của gr, do đó (f,g)=(g,r). Quy trình này làm giảm bậc của đa thức nên nó phải kết thức sau hữu hạn bước, lúc đó ta tìm được (f,g). Tương tự như với số nguyên, dùng thuật toán này ta có thể tìm được các đa thức ab sao cho (f, g)=a f+b g.

Định lí 3. Cho f, g,h \in K[x] với (h, f)=1h\mid fg. Khi đó h\mid g.

Chứng minh. Bạn đọc tự chứng minh xem như bài tập. \Box

Định nghĩa 2. Một đa thức khác hằng với hệ số trong K được gọi là bất khả quy trên K nếu nó không thể phân tích trong K[x] thành tích của hai đa thức có bậc nhỏ hơn. Nó được gọi là khả quy trên K nếu có phân tích như vậy.

Ví dụ. Đa thức x^2-x+1 bất khả quy trên \mathbb{R} nhưng khả quy trên \mathbb{C}.

Tất cả những đa thức bậc 1 là bất khả quy trên K. Mỗi đa thức có bậc lớn hơn 1 có nghiệm trong K sẽ khả quy trên K. Ngược lại không đúng, một đa thức khả quy vẫn có thể không có nghiệm trong K. Tuy nhiên, với các đa thức bậc 2 hay 3 ta có kết quả sau:

Định lí 4. Một đa thức có bậc 2 hay 3 bất khả quy trên K khi và chỉ khi nó không có nghiệm trong K.

Tương tự như với số nguyên ta có các định lí sau. Bạn đọc tự chứng minh chúng xem như bài tập.

Định lí 5. Đa thức khác hằng p \in K[x] bất khả quy trên K khi và chỉ khi với mỗi f,g \in K[x], p\mid fg kéo theo p \mid f hoặc p \mid g.

Định lí 6. Mỗi đa thức khác hằng với hệ số trong K có thể viết như là một phần tử của K nhân với tích của các đa thức monic bất khả quy trên K. Nếu không kể đến thứ tự của các nhân tử thì biểu diễn này là duy nhất.

Continue reading “Z – K[x]”

Perfect rulers


Giả sử ta có một cái thước kẻ dài \displaystyle 6, trên đó đã đánh dấu các điểm \displaystyle 0, \displaystyle 1, \displaystyle 2, \displaystyle 3, \displaystyle 4, \displaystyle 5, \displaystyle 6. Sử dụng chiếc thước này ta có thể tạo mọi đoạn có độ dài thuộc \displaystyle [6], nhưng ta không cần đánh dấu trên thước nhiều điểm như thế để đạt được điều này. Ta có thể đánh dấu \displaystyle 0, \displaystyle 1, \displaystyle 4, 6 là đủ (đoạn độ dài 2 được đo giữa hai điểm 46, đoạn độ dài 3 được đo giữa 14, đoạn độ dài 4 được đo giữa 04, đoạn độ dài 5 được đo giữa 16). Vì C_4^2=6 nên hoàn cảnh này là hoàn hảo.

Bài toán. Cho một số nguyên n lớn hơn 4. Chứng minh rằng không tồn tại n số tự nhiên phân biệt a_1, a_2, \ldots, a_n sao cho mọi số nguyên dương không vượt quá C_n^2 đều có dạng a_i-a_j.

Lời giải. Giả sử ngược lại, tồn tại n số tự nhiên phân biệt a_1, a_2, \ldots, a_n sao cho mọi số nguyên dương không vượt quá C_n^2 đều có dạng a_i-a_j.

Xét đa thức \displaystyle A(z) = \sum_i z^{a_i}. Theo tính chất của các số a_1, a_2, \ldots, a_n, ta có

\displaystyle A(z) \cdot A\left(\frac{1}{z}\right)=\sum_{k=-C_n^2}^{C_n^2} z^k+n-1,\quad \forall z\in\mathbb{C}\setminus \{0\}.

Continue reading “Perfect rulers”

A nonnegative trigonometric polynomial


Bài toán. Cho số tự nhiên n. Chứng minh rằng với mỗi số thực x, ta có

\displaystyle\frac{1}{2}+\frac{\cos x}{2}+\frac{\cos 2x}{3}+\cdots+\frac{\cos nx}{n+1}\geq 0.

Lời giải. Dễ thấy khi \displaystyle n<3 thì khẳng định là đúng. Bây giờ ta xét \displaystyle n\geq 3. Vế trái là hàm số chẵn, tuần hoàn với chu kỳ \displaystyle 2\pi, và bất đẳng thức đúng với \displaystyle x=0. Vì thế ta chỉ cần chứng minh bất đẳng thức khi \displaystyle 0<x\leq \pi. Sử dụng số phức ta chứng minh được kết quả sau:

Bổ đề. \displaystyle \frac{1}{2}+\sum_{k=1}^n\cos kx=\frac{\sin (2n+1)\frac{x}{2}}{2\sin \frac{x}{2}}, và \displaystyle \sum_{k=0}^n\frac{\sin (2k+1)\frac{x}{2}}{2\sin\frac{x}{2}}=\frac{\sin^2(n+1)\frac{x}{2}}{2\sin^2 \frac{x}{2}}.

Gọi vế trái của bất đẳng thức là \displaystyle f_n(x). Dùng biến đổi Abel hai lần và  bổ đề, ta có  \displaystyle 2\sin^2(x/2)f_n(x)=\sum_{k=0}^{n-2}\frac{2\sin^2(k+1)(x/2)}{(k+1)(k+2)(k+3)}+\frac{\sin^2n(x/2)}{n(n+1)}

          \displaystyle +\frac{\sin (2n+1)(x/2)\sin (x/2)}{n+1}.\quad (1)

Nếu \displaystyle (2n+1)\frac{x}{2}\leq \pi thì dễ có điều cần chứng minh, bây giờ ta xét trường hợp còn lại, khi đó \displaystyle n+1>\frac{2\pi+x}{2x}.\quad (2).

Từ \displaystyle (1)\displaystyle n\geq 3, bằng cách dùng hai số hạng đầu trong tổng, ta có bất đẳng thức

\displaystyle 2\sin^2(x/2)f_n(x)\geq \frac{\sin^2(x/2)}{3}+\frac{\sin^2x}{12}-\frac{\sin (x/2)}{n+1}.

Vì thế, bài toán sẽ được giải nếu ta chứng minh được \displaystyle n+1\geq \frac{6}{\sin \frac{x}{2}(3+\cos x)}:=g(x).\quad (3)

Bây giờ ta xét hai trường hợp:

Trường hợp 1: \displaystyle 0<x\leq \pi/3.

Hàm số \displaystyle y=\sin t/t nghịch biến trên \displaystyle (0;\pi/6] nên \displaystyle \sin\frac{x}{2}\geq \frac{3x}{2\pi}, suy ra \displaystyle g(x)\leq \frac{4\pi}{x(3+\cos x)},\displaystyle \cos t\geq 1-\frac{t^2}{2} với mọi \displaystyle t không âm nên \displaystyle g(x)\leq \frac{8\pi}{x(8-x^2)}.\quad (4)

\displaystyle 0<x\leq \pi/3 nên \displaystyle x^2+2\pi x<8, suy ra \displaystyle \frac{8\pi}{x(8-x^2)}<\frac{2\pi+x}{2x}. Kết hợp với \displaystyle (2) ta có \displaystyle (3) đúng.

Trường hợp 2: \pi/3<x\leq \pi.

Bằng cách chuyển về biến \displaystyle t=\sin x/2 ta chứng minh được \displaystyle g(x)<4\leq n+1, và có \displaystyle (3) lại đúng.