A nonnegative trigonometric polynomial


Bài toán. Cho số tự nhiên n. Chứng minh rằng với mỗi số thực x, ta có

\displaystyle\frac{1}{2}+\frac{\cos x}{2}+\frac{\cos 2x}{3}+\cdots+\frac{\cos nx}{n+1}\geq 0.

Lời giải. Dễ thấy khi \displaystyle n<3 thì khẳng định là đúng. Bây giờ ta xét \displaystyle n\geq 3. Vế trái là hàm số chẵn, tuần hoàn với chu kỳ \displaystyle 2\pi, và bất đẳng thức đúng với \displaystyle x=0. Vì thế ta chỉ cần chứng minh bất đẳng thức khi \displaystyle 0<x\leq \pi. Sử dụng số phức ta chứng minh được kết quả sau:

Bổ đề. \displaystyle \frac{1}{2}+\sum_{k=1}^n\cos kx=\frac{\sin (2n+1)\frac{x}{2}}{2\sin \frac{x}{2}}, và \displaystyle \sum_{k=0}^n\frac{\sin (2k+1)\frac{x}{2}}{2\sin\frac{x}{2}}=\frac{\sin^2(n+1)\frac{x}{2}}{2\sin^2 \frac{x}{2}}.

Gọi vế trái của bất đẳng thức là \displaystyle f_n(x). Dùng biến đổi Abel hai lần và  bổ đề, ta có  \displaystyle 2\sin^2(x/2)f_n(x)=\sum_{k=0}^{n-2}\frac{2\sin^2(k+1)(x/2)}{(k+1)(k+2)(k+3)}+\frac{\sin^2n(x/2)}{n(n+1)}

          \displaystyle +\frac{\sin (2n+1)(x/2)\sin (x/2)}{n+1}.\quad (1)

Nếu \displaystyle (2n+1)\frac{x}{2}\leq \pi thì dễ có điều cần chứng minh, bây giờ ta xét trường hợp còn lại, khi đó \displaystyle n+1>\frac{2\pi+x}{2x}.\quad (2).

Từ \displaystyle (1)\displaystyle n\geq 3, bằng cách dùng hai số hạng đầu trong tổng, ta có bất đẳng thức

\displaystyle 2\sin^2(x/2)f_n(x)\geq \frac{\sin^2(x/2)}{3}+\frac{\sin^2x}{12}-\frac{\sin (x/2)}{n+1}.

Vì thế, bài toán sẽ được giải nếu ta chứng minh được \displaystyle n+1\geq \frac{6}{\sin \frac{x}{2}(3+\cos x)}:=g(x).\quad (3)

Bây giờ ta xét hai trường hợp:

Trường hợp 1: \displaystyle 0<x\leq \pi/3.

Hàm số \displaystyle y=\sin t/t nghịch biến trên \displaystyle (0;\pi/6] nên \displaystyle \sin\frac{x}{2}\geq \frac{3x}{2\pi}, suy ra \displaystyle g(x)\leq \frac{4\pi}{x(3+\cos x)},\displaystyle \cos t\geq 1-\frac{t^2}{2} với mọi \displaystyle t không âm nên \displaystyle g(x)\leq \frac{8\pi}{x(8-x^2)}.\quad (4)

\displaystyle 0<x\leq \pi/3 nên \displaystyle x^2+2\pi x<8, suy ra \displaystyle \frac{8\pi}{x(8-x^2)}<\frac{2\pi+x}{2x}. Kết hợp với \displaystyle (2) ta có \displaystyle (3) đúng.

Trường hợp 2: \pi/3<x\leq \pi.

Bằng cách chuyển về biến \displaystyle t=\sin x/2 ta chứng minh được \displaystyle g(x)<4\leq n+1, và có \displaystyle (3) lại đúng.

Convex function


Để tiện theo dõi, các bạn đọc lại bài sau

Cho C là một đoạn, khoảng hoặc nửa khoảng không nhất thiết bị chặn.

Một hàm số f:C\to\mathbb{R} được gọi là lồi trên C nếu f((1-\lambda)x+\lambda y)\leq (1-\lambda)f(x)+\lambda f(y) với mọi x,y\in C và mọi \lambda\in [0;1].

Như vậy f là lồi nếu mọi đoạn có các đầu mút thuộc đồ thị đều không nằm dưới đồ thị.

Một hàm số f:C\to\mathbb{R} được gọi là lồi nghiêm ngặt trên C nếu f((1-\lambda)x+\lambda y)< (1-\lambda)f(x)+\lambda f(y) với mọi x,y\in C và mọi \lambda\in [0;1] thỏa mãn x\not=y0<\lambda<1.

Hàm lồi và hàm lồi nghiêm ngặt.

Hàm số f được gọi là lõm (lõm nghiêm ngặt) nếu hàm -f lồi (lồi nghiêm ngặt).

Hàm lồi nghiêm ngặt là hàm lồi, ngược lại nói chung không đúng. Các hàm số y=ax+b,y=\mid x\midy=x^2 đều lồi trên \mathbb{R}. Hàm cuối cùng là hàm lồi nghiêm ngặt trên \mathbb{R}.

Định lí 1. Cho hàm số f:[a;b]\to\mathbb{R} liên tục trên [a;b] và lồi trên (a;b). Khi đó f lồi trên [a;b].

Định lí 2. Hàm số f:C\to\mathbb{R} lồi trên C nếu và chỉ nếu tập hợp \text{epi}\, f=\{(x;y)\in C\times \mathbb{R}\mid f(x)\leq y\} là tập hợp lồi. Tập hợp này được gọi là bia của f.

Nếu một hàm số lồi trên một khoảng thì nó liên tục trên khoảng đó. Để chứng minh kết quả này ta cần bổ đề sau.

Bổ đề. Cho hàm số f:C\to\mathbb{R} lồi trên C. Khi đó \displaystyle\frac{f(y)-f(x)}{y-x}\leq \frac{f(z)-f(x)}{z-x}\leq \frac{f(z)-f(y)}{z-y} với mọi x,y,z\in C thỏa mãn x<y<z.

Định lí 3. Nếu f:(a;b)\to\mathbb{R} lồi trên (a;b) thì f liên tục trên (a;b).

Nếu thay miền xác định của f bởi đoạn thì khẳng định không còn đúng. Chẳng hạn hàm số f:[0;1]\to\mathbb{R} xác định bởi f(x)=\begin{cases}1,\quad x=0\\ 0,\quad 0<x\leq 1\end{cases} là hàm số lồi trên [0;1] nhưng không liên tục trên [0;1].

Sau đây là tiêu chuẩn lồi với các hàm có đạo hàm cấp hai.

Continue reading “Convex function”