VMO 2025/1


VMO 2025/1. Xét đa thức P(x)=x^4-x^3+x.
(1) Chứng minh rằng với mỗi số thực dương a, đa thức P(x)-a có duy nhất một nghiệm thực dương.
(2) Xét dãy số (a_n)_{n\geq 1} xác định bởi a_1=1/3 và với mỗi số nguyên dương n, a_{n+1} là nghiệm dương của đa thức P(x)-a_n. Chứng minh rằng dãy số này có giới hạn hữu hạn và tìm giới hạn đó.

Lời giải. Xét một số thực dương a và hàm số f:\mathbb{R}\to\mathbb{R} xác định bởi f(x)=P(x)-a,\quad\forall x\in\mathbb{R}. Hàm số f là một hàm số liên tục trên (0;+\infty)

\displaystyle \lim_{x\to 0^+} f(x)=-a<0,\quad\lim_{x\to+\infty}f(x)=+\infty,

từ đây theo định lý giá trị trung gian, phương trình f(x)=0 có ít nhất một nghiệm thực dương. Mặt khác, hàm số f đồng biến trên (0;+\infty)

\displaystyle f^{\prime}(x)=4x^3-3x^2+1=(2x-1)^2\left(x+\frac{1}{4}\right)+\frac{3}{4}>0

với mọi số thực dương x, suy ra phương trình f(x)=0 có đúng một nghiệm thực dương. Do đó phương trình P(x)-a=0 có đúng một nghiệm thực dương. Nghiệm này là nghiệm đơn của đa thức P(x)-a nên ta có ý thứ nhất.

Bây giờ ta đến với ý thứ hai. Từ giả thiết ta có

a_n-1=(a_{n+1}-1)(a_{n+1}^3+1),\quad\forall n\geq 1,

sử dụng phương pháp quy nạp ta chứng minh được tất cả các số hạng của dãy (a_n)_{n\geq 1} đều thuộc khoảng (0;1). Suy ra

a_{n+1}-a_n=a_{n+1}^3(1-a_{n+1})>0,\quad\forall n\geq 1,

do đó (a_n)_{n\geq 1} là một dãy số tăng. Dãy số này cũng bị chặn trên bởi 1 nên nó có giới hạn hữu hạn. Gọi L là giới hạn của dãy số (a_n)_{n\geq 1}. Vì (a_n)_{n\geq 1} tăng và các số hạng đều thuộc khoảng (0;1), nên 0<L\leq 1.

Từ P(a_{n+1})=a_n với mọi số nguyên dương n, ta có L^4-L^3+L=L, suy ra \lim a_n=L=1. \Box

Leave a comment