IMO Shortlist 2023: Geometry


G1. https://artofproblemsolving.com/community/c6h3359760p31218557

Cho ABCDE là một ngũ giác lồi thỏa mãn \angle ABC = \angle AED = 90^\circ. Giả sử trung điểm của CD là tâm của đường tròn ngoại tiếp tam giác ABE. Gọi O là tâm của đường tròn ngoại tiếp tam giác ACD. Chứng minh rằng đường thẳng AO đi qua trung điểm của đoạn thẳng BE.

G2. https://artofproblemsolving.com/community/c6h3359729p31218382

Cho tam giác ABC với AC > BC. Gọi \omega là đường tròn ngoại tiếp tam giác ABC, và r là bán kính của nó. Điểm P được chọn trên {AC} sao cho BC=CP, và điểm S là chân đường vuông góc hạ từ P xuống {AB}. Tia BP cắt lại \omega tại D. Điểm Q được chọn trên đường thẳng SP sao cho PQ = rS, P, Q thẳng hàng theo thứ tự đó. Cuối cùng, gọi E là một điểm thỏa mãn {AE} \perp {CQ}{BE} \perp {DQ}. Chứng minh rằng E nằm trên \omega.

G3. https://artofproblemsolving.com/community/c6h3359737p31218405

Cho tứ giác nội tiếp ABCD với \angle BAD < \angle ADC. Gọi M là trung điểm của cung CD không chứa A. Giả sử có một điểm P nằm trong ABCD sao cho \angle ADB = \angle CPD\angle ADP = \angle PCB. Chứng minh rằng các đường thẳng AD, PM, và BC đồng quy.

G4. https://artofproblemsolving.com/community/c6h3106748p28097552

Cho tam giác nhọn ABC với AB<AC. Gọi S là điểm chính giữa của cung BC chứa A của (ABC). Đường thẳng qua A vuông góc với BC cắt BS tại D và cắt lại (ABC) tại E. Đường thẳng qua D song song với BC cắt BE tại L. (BDL) cắt lại (ABC) tại P. Chứng minh rằng tiếp tuyến của (BDL) tại P cắt BS trên phân giác của góc BAC. (IMO2023/2)

G5. https://artofproblemsolving.com/community/c6h3359731p31218385

Cho tam giác nhọn ABC với đường tròn ngoại tiếp \omega có tâm là O. Các điểm D\neq BE\neq C nằm trên \omega sao cho BD\perp ACCE\perp AB. Giả sử CO cắt AB tại X, và BO cắt AC tại Y. Chứng minh rằng các đường tròn ngoại tiếp các tam giác BXDCYE cùng đi qua một điểm thuộc đường thẳng AO.

G6. https://artofproblemsolving.com/community/c6h3359733p31218391

Cho tam giác nhọn ABC với đường tròn ngoại tiếp \omega. Một đường tròn \Gamma tiếp xúc trong với \omega tại A và tiếp xúc với BC tại D. Các đường thẳng ABAC cắt \Gamma lần lượt tại PQ. Gọi MN là các điểm nằm trên BC sao cho B là trung điểm của DMC là trung điểm của DN. Các đường thẳng MPNQ cắt nhau tại K, và cắt lại \Gamma lần lượt tại IJ. Tia KA cắt đường tròn ngoại tiếp tam giác IJK tại X\neq K. Chứng minh rằng \angle BXP = \angle CXQ.

G7. https://artofproblemsolving.com/community/c6h3359736p31218400

Cho tam giác nhọn ABC với trực tâm H. Gọi \ell_a là đường thẳng đi qua điểm đối xứng với B qua CH và điểm đối xứng với C qua BH. Các đường thẳng \ell_b\ell_c được xác định tương tự. Giả sử ba đường thẳng \ell_a, \ell_b, và \ell_c xác định một tam giác \mathcal T. Chứng minh rằng trực tâm của \mathcal T, tâm đường tròn ngoại tiếp của \mathcal T, và H thẳng hàng.

G8. https://artofproblemsolving.com/community/c6h3107345p28104331

Cho ABC là một tam giác đều. Gọi A_1,B_1,C_1 là các điểm nằm trong tam giác ABC sao cho BA_1=A_1C, CB_1=B_1A, AC_1=C_1B, và

\angle BA_1C+\angle CB_1A+\angle AC_1B=480^\circ.

Giả sử BC_1CB_1 cắt nhau tại A_2, CA_1AC_1 cắt nhau tại B_2, AB_1 BA_1 cắt nhau tại C_2. Chứng minh rằng nếu tam giác A_1B_1C_1 là tam giác không cân thì ba đường tròn ngoại tiếp các tam giác AA_1A_2, BB_1B_2CC_1C_2 đi qua hai điểm chung. (IMO2023/6)

3 thoughts on “IMO Shortlist 2023: Geometry

Leave a comment