Tree


Một đồ thị không chứa chu trình được gọi là một rừng. Một rừng liên thông được gọi là một cây.

Ví dụ 1. Cho G là một cây trên n>1 đỉnh. Chứng minh rằng G có ít nhất hai lá, và nếu v là một lá thì G\setminus\{v\} là một cây.

Hướng dẫn. Trong các đường đi của G, quan tâm đến một đường đi dài nhất. Chứng minh hai đầu của nó là lá. Chỉ ra G\setminus\{v\} là một rừng liên thông. \Box

Định lý 1. Với một đồ thị G, các khẳng định sau là tương đương:

(1) G là một cây;

(2) Mỗi hai đỉnh của G được nối với nhau bởi một đường đi duy nhất trong G;

(3) G là đồ thị liên thông và với mỗi cạnh e, đồ thị có được từ G bằng cách bỏ đi cạnh e không phải là đồ thị liên thông;

(4) G không chứa chu trình và với mỗi hai đỉnh không kề nhau xy, đồ thị có được từ G bằng cách thêm vào cạnh xy chứa một chu trình.

Chứng minh. Giả sử G là một cây và x, y là hai đỉnh của G. Vì G là đồ thị liên thông nên có một đường đi nối xy, ký hiệu là \alpha. Nếu có một đường đi khác đường đi này nối xy, ký hiệu là \beta, gọi z là đỉnh chung gần x nhất của hai đường đi. Đường đi từ x đến z dọc theo \alpha hợp với đường đi từ z đến x dọc theo \beta tạo thành một chu trình, vô lý. Vậy ta đã chứng minh (1)\Rightarrow (2).

Xét một cạnh e=xy của G. Nếu đồ thị có được từ G bằng cách bỏ đi cạnh e là đồ thị liên thông, thì trong G có một đường đi nối xy mà không chứa e. Đường đi này cùng với e là hai đường đi nối xy. Vậy ta đã chứng minh (2)\Rightarrow (3), vì nếu có (2) thì đồ thị phải là đồ thị liên thông.

Bây giờ giả sử có (3). Trước tiên ta thấy G không chứa chu trình, vì nếu không ta bỏ đi một cạnh của chu trình thì đồ thị mới vẫn liên thông, vô lý. Xét hai đỉnh không kề nhau xy. Vì G là đồ thị liên thông nên có đường đi nối xy. Thêm cạnh xy vào đường đi này ta có một chu trình trong đồ thị có được từ G bằng cách thêm vào cạnh xy. Vậy ta có (4).

Cuối cùng, ta giả sử có (4). Xét hai đỉnh phân biệt xy. Nếu xy kề nhau thì có đường đi nối xy, là xy chẳng hạn. Nếu xy không kề nhau thì đồ thị có được từ G bằng cách thêm vào cạnh xy chứa một chu trình. Vì G không chứa chu trình nên chu trình này chứa xy, bỏ xy ra khỏi nó ta có đường đi trong G nối xy. Vậy ta có (1). \Box

Hệ quả. Một đồ thị liên thông trên n đỉnh là một cây khi và chỉ khi nó có n-1 cạnh.

Chứng minh. Giả sử G là một cây trên n đỉnh. Vì G là đồ thị liên thông nên theo định lý 1 trong [4], ta có thể đánh số các đỉnh của Gv_1, v_2, \ldots, v_n sao cho G_i:=G[v_1,v_2,\ldots,v_i] là đồ thị liên thông với mọi i. Do G là một cây nên mỗi G_i là một cây. Giả sử G_ii-1 cạnh với mọi chỉ số i<k (k là một số nguyên dương sao cho k\leq n). Vì G_k là liên thông nên với mỗi i<k, có đường đi trong G_k nối v_iv_k. Trong tất cả các đường đi như thế, xét đường đi ngắn nhất và giả sử nó nối v_1v_k. Đường đi này phải có độ dài bằng 1, hay v_kv_1 kề nhau trong G. Vì G không có chu trình nên trong G_{k-1}, chỉ có đúng một đỉnh kề với v_k, suy ra G_kk-2+1=k-1 cạnh. Theo nguyên lý quy nạp toán học, G=G_nn-1 cạnh.

Ngược lại, giả sử G là một đồ thị liên thông trên n đỉnh và có n-1 cạnh. Gọi T là một đồ thị con bao trùm liên thông cực tiểu của G. Do tính cực tiểu, khi bỏ mỗi cạnh ra khỏi T thì đồ thị thu được không liên thông, suy ra theo định lý 1 thì T là một cây. Cây này có số cạnh bằng n-1 theo phần đầu của chứng minh, do đó T=G. \Box

Trong một số vấn đề, việc xét một cây với gốc sẽ rất thuận tiện. Giả sử có một cây T và một đỉnh cố định r, gọi là gốc của cây. Với hai đỉnh xy của T, có đúng một đường đi nối xy, ta ký hiệu nó là xTy. Với a,b\in T, ta viết a\leq_T b (hoặc a\leq b khi không sợ nhầm lẫn) nếu a\in rTb. Ta thấy \leq_T là một quan hệ thứ tự bộ phận trên T, gọi là thứ tự cây. Khi a<b ta nói b nằm trên a, hay a nằm dưới b. Theo quan hệ thứ tự này thì r là phần tử nhỏ nhất của T, mỗi lá là phần tử cực đại. Hai đầu mút của mỗi cạnh của T là so sánh được.

Ví dụ 2. Cho số nguyên n lớn hơn 1 và một cây trên n đỉnh. Các đỉnh của cây được viết các số thực x_1, x_2, \ldots, x_n. Mỗi cạnh của cây được viết tích của hai số được viết trên các đầu mút của cạnh, gọi S là tổng tất cả các số này. Chứng minh rằng

\displaystyle\sqrt{n-1}\left(x_1^2+x_2^2+\dots+x_n^2\right)\geq 2S.

Lời giải. Giả sử tập các đỉnh của cây là V=\{v_1, v_2, \ldots, v_n\} sao cho với mỗi i, số được viết trên v_ix_i. Với hai đỉnh kề nhau v_iv_j, gọi P(i,j) là tập các đỉnh của cây không nối được đến v_i bởi một đường đi sau khi xóa khỏi cây cạnh v_iv_j. Ta có ngay 1\leq \mid P(i,j)\mid \leq n-1 mỗi khi v_iv_j kề nhau.

Nhận xét 1. Nếu v_iv_j kề nhau thì \mid P(i,j)\mid +\mid P(j,i)\mid=n.

Chứng minh. Gọi v là một đỉnh của cây, và xem nó là gốc. Ta có v_iv_j là so sánh được theo thứ tự cây. Nếu v_i<v_j thì v\in P(j,i), nếu v_j<v_i thì v\in P(i,j), nhưng không thể có cả hai. Như vậy V được phân hoạch thành P(i,j)P(j,i), từ đây ta có điều cần chứng minh. \Box

Nhận xét 2. Với mỗi i,

\displaystyle \sum_{v_j\in N(v_i)}\mid P(i,j)\mid =n-1.

Chứng minh. Cố định một chỉ số i. Do mỗi đỉnh đều nối đến v_i bởi một đường đi duy nhất và cây không có chu trình nên các P(i,j) với v_j\in N(v_i) làm thành một phân hoạch của V\setminus\{v_i\}, từ đây ta có điều cần chứng minh. \Box

Bây giờ với mỗi cạnh v_iv_j, theo nhận xét 1 ta có

\displaystyle \mid P(i,j)\mid .\mid P(j,i)\mid=\frac{n^2-(\mid P(i,j)\mid -\mid P(j,i)\mid)^2}{4}\geq n-1,

suy ra

\displaystyle\frac{\mid P(i,j)\mid}{\sqrt{n-1}}x_i^2+\frac{\mid P(j,i)\mid}{\sqrt{n-1}}x_j^2\geq 2\sqrt{\frac{\mid P(i,j)\mid .\mid P(j,i)\mid}{n-1}}|x_ix_j|\geq 2x_ix_j.

Mỗi cạnh cho ta một bất đẳng thức có dạng như trên, cộng theo vế các bất đẳng thức này ta có bất đẳng thức trong đề bài. \Box

Tài liệu tham khảo

[1] https://nttuan.org/2009/08/13/graph01/

[2] https://nttuan.org/2023/09/01/graph02/

[3] https://nttuan.org/2024/06/04/graph03/

[4] https://nttuan.org/2024/07/01/connected-graph/