Connected graph 


Một đồ thị (xem lại [2]) khác rỗng G được gọi là liên thông nếu mỗi hai đỉnh của nó được nối với nhau bởi một đường đi (xem lại [3]).

Định lý 1. Các đỉnh của một đồ thị liên thông G có thể đánh số v_1, v_2, \ldots, v_n sao cho G_i:=G[v_1,v_2,\ldots,v_i] là đồ thị liên thông với mọi i.

Chứng minh. Lấy một đỉnh v_1, và giả sử đã đánh số được các đỉnh v_1, v_2, \ldots, v_i thỏa mãn tính chất trong định lý, ở đây i<\mid G\mid. Giả sử v là một đỉnh khác tất cả các đỉnh đã được đánh số. Vì G là đồ thị liên thông nên tồn tại đường đi P nối v với v_1. Chọn v_{i+1} là đỉnh cuối của P mà không thuộc G_i, khi đó v_{i+1} có một láng giềng trong G_iG_{i+1} liên thông. \Box

Hệ quả. Một đồ thị liên thông trên n đỉnh sẽ có ít nhất n-1 cạnh.

Chứng minh. Quy nạp theo n và dùng định lý 1. Bạn đọc tự chứng minh xem như một bài tập. \Box

Cho đồ thị G=G(V,E). Một đồ thị con liên thông cực đại (cực đại theo nghĩa không có đồ thị con liên thông chứa và khác nó, xem lại [2]) của G được gọi là thành phần liên thông của G. Đương nhiên, các thành phần liên thông là các đồ thị con cảm sinh (xem lại [2]) của G, và tập các đỉnh của chúng lập thành một phân hoạch của V. Một đồ thị là liên thông nếu và chỉ nếu nó có đúng một thành phần liên thông.

Ví dụ 1. Cho G là một đồ thị với m cạnh và p thành phần liên thông. Chứng minh rằng m+p\geq \mid G\mid.

Lời giải. Gọi n_i là số đỉnh của thành phần liên thông thứ i. Khi đó số cạnh của thành phần liên thông thứ i không bé hơn n_i-1, do đó

m\geq \sum (n_i-1)=-p+\sum n_i=\mid G\mid -p,

và bài toán được giải. \Box

Ví dụ 2. Cho G là một đồ thị con không liên thông của K_n. Chứng minh rằng \overline{G} là một đồ thị con liên thông của K_n.

Lời giải. Gọi G^{\prime} là một thành phần liên thông của G. Vì G không liên thông nên G\setminus G^{\prime} khác rỗng. Do tính cực đại của thành phần liên thông, không có cạnh nào của G nối một đỉnh của G^{\prime} với một đỉnh của G\setminus G^{\prime}. Suy ra trong \overline{G}, mỗi đỉnh của G^{\prime} sẽ nối với mỗi đỉnh của G\setminus G^{\prime}.

Vậy muốn chứng minh \overline{G} liên thông, ta chỉ cần chứng minh hai đỉnh cùng thuộc G^{\prime} hoặc G\setminus G^{\prime} được nối với nhau. Nếu hai đỉnh cùng thuộc G^{\prime} thì ta nối chúng với nhau qua một đỉnh của G\setminus G^{\prime}, và ngược lại. \Box

Cho số tự nhiên k. Một đồ thị G=(V,E) được gọi là $k-$liên thông nếu k<\mid G\midG\setminus X vẫn là đồ thị liên thông với mọi X\subset V\mid X\mid<k. Số k lớn nhất sao cho Gk-liên thông được gọi là chỉ số liên thông của G, ký hiệu k(G).

Ví dụ 3. k(K_n)=n-1 với mỗi số nguyên dương n.

Lời giải. Bạn đọc tự giải xem như bài tập. \Box

Định lý 2 (Whitney, 1932). Cho đồ thị G=(V,E) với \mid G\mid\geq 3. Khi đó G2-liên thông khi và chỉ khi với hai đỉnh phân biệt bất kỳ của G, tồn tại hai đường đi rời nhau nối chúng (hai đường đi được gọi là rời nhau nếu chúng không có đỉnh trong chung). 

Chứng minh. Khẳng định đúng hiển nhiên khi \mid G\mid =3. Bây giờ ta xét \mid G\mid >3. Đầu tiên, giả sử với hai đỉnh phân biệt bất kỳ của G tồn tại hai đường đi rời nhau nối chúng. Gọi w là một đỉnh bất kỳ và u,v là hai đỉnh khác nhau của G\setminus\{w\}. Giữa uv sẽ có hai đường đi rời nhau nối chúng, w sẽ không thuộc một trong hai đường này, ký hiệu P. Ta có P là một đường trong G\setminus\{w\} nối uv. Suy ra G\setminus\{w\} liên thông, do đó G2-liên thông.

Bây giờ giả sử G2-liên thông và tồn tại hai đỉnh phân biệt uv mà không có hai đường đi rời nhau. Vì \mid G\mid >3 nên tồn tại ít nhất hai đường đi nối uv. Gọi PQ là hai đường đi nối uv mà có tập đỉnh chung S có ít phần tử nhất có thể. Lấy w\in S\setminus \{u,v\}P_1, P_2 là phần của P từ u đến w, w đến v. Tương tự ta định nghĩa Q_1Q_2.

G2-liên thông, ta có thể lấy một đường đi R ngắn nhất từ một đỉnh x thuộc (P_1\cup Q_1)\setminus \{w\} đến một đỉnh y thuộc (P_2\cup Q_2)\setminus \{w\} mà không qua w. Giả sử mà không làm mất tính tổng quát rằng x\in P_1y\in Q_2. Gọi T là đường đi nối u với v được hình thành bởi phần P_1 nối u với x, và phần Q_2 nối y với v, cùng với R. Do cách chọn R, hai đường đi TQ_1\cup P_2 cùng nối u với v nhưng có tập các đỉnh chung là tập con của S\setminus \{w\}, vô lý. \Box

Cho một đồ thị G. Đường đi P (không nhất thiết trong G) được gọi là G-đường nếu \mid P\mid >1P\cap G chỉ chứa hai đầu mút của P. Kết quả sau cho ta biết cấu trúc của các đồ thị 2-liên thông.

Định lý 3. Một đồ thị là 2-liên thông khi và chỉ khi nó có thể được dựng từ một chu trình bằng cách bổ sung liên tiếp các H-đường vào các đồ thị H đã được dựng.

Tài liệu tham khảo

[1] https://nttuan.org/2009/08/13/graph01/

[2] https://nttuan.org/2023/09/01/graph02/

[3] https://nttuan.org/2024/06/04/graph03/

One thought on “Connected graph 

  1. Pingback: Tree – T's Lab

Leave a comment