IMO Shortlist 2022: Geometry


Trong bài này tôi sẽ dịch phần Hình học trong cuốn IMO Shortlist 2022. Các năm trước bạn có thể tìm ở đường dẫn https://nttuan.org/2023/07/02/isl/

G1.  Cho ngũ giác lồi ABCDE với BC=DE. Giả sử có một điểm T nằm trong ABCDE sao cho TB=TD, TC=TE,\angle ABT = \angle TEA. Đường thẳng AB cắt các đường thẳng CDCT lần lượt tại PQ. Giả sử P, B, A,Q thẳng hàng theo thứ tự đó. Đường thẳng AE cắt các đường thẳng CDDT lần lượt tại RS. Giả sử R, E, A,S thẳng hàng theo thứ tự đó. Chứng minh rằng các điểm P, S, Q,  và R cùng nằm trên một đường tròn.

G2. Trong tam giác nhọn ABC, điểm F là chân đường cao kẻ từ A, P là một điểm trên đoạn AF. Các đường thẳng qua P song song với ACAB lần lượt cắt BC tại DE. Các điểm X \ne AY \ne A lần lượt nằm trên (ABD)(ACE) sao cho DA = DXEA = EY. Chứng minh rằng các điểm B, C, X,Y cùng nằm trên một đường tròn.

G3. Cho ABCD là một tứ giác nội tiếp. Giả sử các điểm Q, A, B, và P thẳng hàng theo thứ tự này sao cho đường thẳng AC là tiếp tuyến của (ADQ), và đường thẳng BD là tiếp tuyến của (BCP). Gọi MN lần lượt là trung điểm của các đoạn thẳng BCAD. Chứng minh ba đường thẳng sau đồng quy: đường thẳng CD, tiếp tuyến của (ANQ) tại A, và tiếp tuyến của (BMP) tại B.

G4. Cho ABC là một tam giác nhọn có AC > AB, gọi O là tâm đường tròn ngoại tiếp của nó và D là một điểm trên đoạn BC. Đường thẳng qua D vuông góc với BC lần lượt cắt các đường thẳng AO, AC,AB tại W, X,Y. Các đường tròn ngoại tiếp của các tam giác AXYABC cắt lại nhau tại Z \ne A. Chứng minh rằng nếu W \ne DOW = OD, thì DZ là tiếp tuyến của (AXY).

G5. Cho ABC là một tam giác và \ell_1,\ell_2 là hai đường thẳng song song. Giả sử với mỗi i, \ell_i lần lượt cắt các đường thẳng BC, CA, AB tại X_i,Y_i,Z_i. Với mỗi i, gọi \Delta_i là tam giác được tạo bởi đường thẳng đi qua X_i và vuông góc với BC, đường thẳng đi qua Y_i và vuông góc với CA, và đường thẳng đi qua Z_i và vuông góc với AB. Chứng minh rằng các đường tròn ngoại tiếp các tam giác \Delta_1\Delta_2 tiếp xúc với nhau.

G6. Cho ABC là một tam giác nhọn có đường cao {AH}P là một điểm thay đổi sao cho các đường phân giác k\ell lần lượt của \angle PBC\angle PCB gặp nhau trên {AH}. Cho k gặp {AC} tại E, \ell gặp {AB} tại F{EF} gặp {AH} tại Q. Chứng minh rằng khi P thay đổi, đường thẳng PQ luôn đi qua một điểm cố định.

G7. Hai tam giác ABC, A^{\prime}B^{\prime}C^{\prime} có cùng trực tâm H và cùng đường tròn ngoại tiếp có tâm O. Gọi PQR là tam giác tạo bởi AA^{\prime}, BB^{\prime}CC^{\prime}, chứng minh rằng tâm đường tròn ngoại tiếp của tam giác PQR nằm trên OH.

G8. Cho AA^{\prime}BCC^{\prime}B^{\prime} là một lục giác lồi nội tiếp sao cho AC là tiếp tuyến của đường tròn nội tiếp tam giác A^{\prime}B^{\prime}C^{\prime}A^{\prime}C^{\prime} là tiếp tuyến của đường tròn nội tiếp tam giác ABC. Cho các đường thẳng ABA^{\prime}B^{\prime} cắt nhau tại X, các đường thẳng BCB^{\prime}C^{\prime} cắt nhau tại Y. Chứng minh rằng nếu XBYB^{\prime} là một tứ giác lồi thì nó có đường tròn nội tiếp.