Divisibility theory in the integers


Trong bài này chúng tôi sẽ trình bày quan hệ chia hết trên tập các số nguyên. Bài viết là tài liệu tự học của các học sinh lớp 10 đang học tại T’s Lab, nhưng các bạn học sinh lớp 8 hoặc 9 xuất sắc có thể hiểu được toàn bài mà không gặp khó khăn nào. Nhiều chứng minh trong bài dùng tính chất sau của tập các số nguyên không âm.

Mỗi tập khác rỗng gồm các số nguyên không âm đều có phần tử nhỏ nhất.

Đầu tiên chúng ta đến với định lí nền tảng của toàn bài.

Định lí 1 (Thuật toán chia). Cho hai số nguyên ab với b>0. Khi đó tồn tại đúng một cặp số nguyên (q,r) thỏa mãn

a=q b+r0 \leq r<b. Hai số qr lần lượt được gọi là thương và dư trong phép chia a cho b.

Chứng minh. Gọi S là tập hợp tất cả các số nguyên không âm có dạng a-xb, với một số nguyên x. Ta thấy S khác rỗng nên nó có phần tử nhỏ nhất, ký hiệu là r.  Từ định nghĩa của S, ta có thể viết r=a-q b, trong đó q là một số nguyên. Nếu r \geq b thì a-(q+1) là một phần tử nhỏ hơn r của S, vô lý, do đó r<b. Bây giờ giả sử (q,r)(q^{\prime},r^{\prime}) là hai cặp có tính chất nói đến trong định lí. Khi đó a=q b+r=q^{\prime} b+r^{\prime}0 \leq r<b, 0 \leq r^{\prime}<b. Từ đây ta có \left|r^{\prime}-r\right|=b\left|q-q^{\prime}\right|, để ý thêm \left|r^{\prime}-r\right|<b, ta thu được 0 \leq\left|q-q^{\prime}\right|<1. Suy ra q=q^{\prime}, và r=r^{\prime}. \Box

Ví dụ 1. Từ định lí 1 ta thấy mọi số nguyên đều có thể viết được dưới dạng 2k hoặc 2k+1 với một số nguyên k. Tương tự, mọi số nguyên đều có thể viết được dưới dạng 3k, 3k+1, hoặc 3k+2 với một số nguyên k. \Box

Định nghĩa 1. Cho hai số nguyên ab với b khác 0. Khi đó a được gọi là chia hết cho b, ký hiệu b \mid a, nếu tồn tại số nguyên c sao cho a=bc. Ta viết b \nmid a khi a không chia hết cho b.

Khi b \mid a, ta cũng nói b là một ước của a, hay a là một bội của b. Ta có ngay lập tức các tính chất sau, chứng minh của chúng là bài tập cho bạn đọc.

Định lí 2. Với các số nguyên a, b, và c, ta có các tính chất sau:

(1) a\mid 0,1\mid a, a \mid a.

(2) a \mid 1 khi và chỉ khi a= \pm 1.

(3) Nếu a \mid bc \mid d, thì a c \mid b d.

(4) Nếu a \mid bb \mid c, thì a \mid c.

(5) a \mid bb \mid a khi và chỉ khi a= \pm b.

(6) Nếu a \mid bb\neq 0, thì \mid a\mid \leq \mid b\mid.

(7) Nếu a \mid ba \mid c, thì a \mid(b x+c y) với các số nguyên bất kỳ xy.

Ta xét một số ví dụ có sử dụng các tính chất này.

Ví dụ 2. Cho a, b, c, và d là các số nguyên thỏa mãn ad-bc>1. Chứng minh rằng ít nhất một bốn số đã cho không chia hết cho ad-bc.

Lời giải. Giả sử ngược lại, khi đó cả bốn số a, b, c, và d đều chia hết cho ad-bc. Suy ra adbc cùng chia hết cho (ad-bc)^2, do đó (ad-bc)^2\mid ad-bc, điều này không thể xảy ra vì ad-bc>1. \Box

Ví dụ 3. Tìm tất cả bộ ba số nguyên (a,b,c) sao cho 1<a<b<c(a-1)(b-1)(c-1) là một ước của abc-1.

Lời giải. Các bộ ba phải tìm là (2,4,8)(3,5,15). Giả sử (a,b,c) là một bộ ba thỏa mãn các yêu cầu của đề bài. Khi đó ba số a, bc có cùng tính chẵn-lẻ, do đó \displaystyle 2 < \frac{abc}{(a-1)(b-1)(c-1)}\leq \frac{a}{a-1} \cdot \frac{a+2}{a+1} \cdot \frac{a+4}{a+3}, suy ra a<4. Đến đây xét a=2a=3 ta có câu trả lời. \Box

Continue reading “Divisibility theory in the integers”