The sum of the reciprocals of the primes


Với mỗi số nguyên dương n, ký hiệu p_n là số nguyên tố thứ n trong dãy tăng tất cả các số nguyên tố. Như vậy p_1=2, p_2=3, p_3=5,…

Trong bài này chúng tôi sẽ giới thiệu một chứng minh của kết quả sau:

Định lý. Chuỗi \displaystyle \frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}+\ldots là một chuỗi phân kỳ.

Chứng minh. Giả sử ngược lại, khi đó với mỗi số nguyên dương k, chuỗi \displaystyle\sum_{m=k}^{+\infty}\frac{1}{p_m} là một chuỗi hội tụ, gọi S_k là tổng của nó. Vì \lim S_k=0 nên tồn tại số nguyên k sao cho \displaystyle S_{k+1}<\frac{1}{2}. Đặt Q=p_1p_2\ldots p_k và xét các số 1+nQ\, (n=1,2,\ldots). Mỗi số trong dãy này đều không có ước nguyên tố thuộc \{p_1, p_2, \ldots, p_k\}, do đó với mỗi số nguyên dương r, tồn tại số nguyên dương K đủ lớn để

\displaystyle\sum_{n=1}^r\frac{1}{1+nQ}\leq\sum_{t=1}^{K}S_{k+1}^t<1.

Điều này không thể xảy ra do chuỗi \displaystyle \sum_{n=1}^{+\infty}\frac{1}{1+nQ} là một chuỗi phân kỳ. \Box

Tham khảo

[1] https://nttuan.org/2018/12/30/series/

[2] https://en.wikipedia.org/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes

Leave a comment