A nonnegative trigonometric polynomial


Bài toán. Cho số tự nhiên n. Chứng minh rằng với mỗi số thực x, ta có

\displaystyle\frac{1}{2}+\frac{\cos x}{2}+\frac{\cos 2x}{3}+\cdots+\frac{\cos nx}{n+1}\geq 0.

Lời giải. Dễ thấy khi \displaystyle n<3 thì khẳng định là đúng. Bây giờ ta xét \displaystyle n\geq 3. Vế trái là hàm số chẵn, tuần hoàn với chu kỳ \displaystyle 2\pi, và bất đẳng thức đúng với \displaystyle x=0. Vì thế ta chỉ cần chứng minh bất đẳng thức khi \displaystyle 0<x\leq \pi. Sử dụng số phức ta chứng minh được kết quả sau:

Bổ đề. \displaystyle \frac{1}{2}+\sum_{k=1}^n\cos kx=\frac{\sin (2n+1)\frac{x}{2}}{2\sin \frac{x}{2}}, và \displaystyle \sum_{k=0}^n\frac{\sin (2k+1)\frac{x}{2}}{2\sin\frac{x}{2}}=\frac{\sin^2(n+1)\frac{x}{2}}{2\sin^2 \frac{x}{2}}.

Gọi vế trái của bất đẳng thức là \displaystyle f_n(x). Dùng biến đổi Abel hai lần và  bổ đề, ta có  \displaystyle 2\sin^2(x/2)f_n(x)=\sum_{k=0}^{n-2}\frac{2\sin^2(k+1)(x/2)}{(k+1)(k+2)(k+3)}+\frac{\sin^2n(x/2)}{n(n+1)}

          \displaystyle +\frac{\sin (2n+1)(x/2)\sin (x/2)}{n+1}.\quad (1)

Nếu \displaystyle (2n+1)\frac{x}{2}\leq \pi thì dễ có điều cần chứng minh, bây giờ ta xét trường hợp còn lại, khi đó \displaystyle n+1>\frac{2\pi+x}{2x}.\quad (2).

Từ \displaystyle (1)\displaystyle n\geq 3, bằng cách dùng hai số hạng đầu trong tổng, ta có bất đẳng thức

\displaystyle 2\sin^2(x/2)f_n(x)\geq \frac{\sin^2(x/2)}{3}+\frac{\sin^2x}{12}-\frac{\sin (x/2)}{n+1}.

Vì thế, bài toán sẽ được giải nếu ta chứng minh được \displaystyle n+1\geq \frac{6}{\sin \frac{x}{2}(3+\cos x)}:=g(x).\quad (3)

Bây giờ ta xét hai trường hợp:

Trường hợp 1: \displaystyle 0<x\leq \pi/3.

Hàm số \displaystyle y=\sin t/t nghịch biến trên \displaystyle (0;\pi/6] nên \displaystyle \sin\frac{x}{2}\geq \frac{3x}{2\pi}, suy ra \displaystyle g(x)\leq \frac{4\pi}{x(3+\cos x)},\displaystyle \cos t\geq 1-\frac{t^2}{2} với mọi \displaystyle t không âm nên \displaystyle g(x)\leq \frac{8\pi}{x(8-x^2)}.\quad (4)

\displaystyle 0<x\leq \pi/3 nên \displaystyle x^2+2\pi x<8, suy ra \displaystyle \frac{8\pi}{x(8-x^2)}<\frac{2\pi+x}{2x}. Kết hợp với \displaystyle (2) ta có \displaystyle (3) đúng.

Trường hợp 2: \pi/3<x\leq \pi.

Bằng cách chuyển về biến \displaystyle t=\sin x/2 ta chứng minh được \displaystyle g(x)<4\leq n+1, và có \displaystyle (3) lại đúng.

Leave a comment