Pell’s equation


Trong bài này chúng tôi sẽ giới thiệu một số định lí của Dirichlet về xấp xỉ số thực bởi số hữu tỉ, và áp dụng các định lí đó vào lý thuyết phương trình Pell.

Định lí 1 (Dirichlet). Cho số thực \theta và số nguyên dương Q. Khi đó có số nguyên dương q và số nguyên a thỏa mãn q\leq Q\displaystyle \left|\theta-\frac{a}{q}\right|\leq\dfrac{1}{q(Q+1)}.

Chứng minh. Phân hoạch nửa đoạn [0;1) thành Q+1 nửa đoạn

\displaystyle I_k=\left[\frac{k}{Q+1};\frac{k+1}{Q+1}\right),\quad k=0,1,\ldots,Q.

Xét Q số \{1.\theta\},\{2.\theta\},\ldots,\{Q.\theta\}.

Nếu I_0 chứa ít nhất một số trong dãy trên, chẳng hạn \{m.\theta\}, ta chọn q=m. Nếu I_{Q} chứa ít nhất một số trong dãy trên, chẳng hạn \{n.\theta\}, ta chỉ cần chọn q=n. Nếu hai khoảng trên không chứa số nào thì tồn tại một khoảng I_i chứa ít nhất hai số \{j.\theta\}, \{k.\theta\} (j<k) trong dãy, ta chọn q=k-j. \Box

Như vậy mọi số thực có thể được xấp xỉ bởi một số hữu tỉ có mẫu bị chặn với độ chính xác phụ thuộc vào chặn trên của mẫu. Sau đây là một áp dụng đẹp đẽ của định lí trên:

Hệ quả. Mọi số nguyên tố dạng 4k+1 có thể viết thành tổng của hai số chính phương.

Chứng minh. Theo định lí Wilson, tồn tại số nguyên dương c sao cho c^2+1\equiv 0\pmod{p}. Theo định lí Dirichlet, tồn tại các số nguyên a,b sao cho 1\leq b\leq [\sqrt{p}]

\displaystyle \left|\frac{c}{p}-\frac{a}{b}\right|\leq\frac{1}{b([\sqrt{p}]+1)}<\frac{1}{b\sqrt{p}}. \quad (*)

Từ (*) ta có |cb-ap|<\sqrt{p}, suy ra 0<(cb-ap)^2+b^2<2p, mà (cb-ap)^2+b^2\equiv b^2(c^2+1)\equiv 0\pmod{p}, suy ra (cb-ap)^2+b^2=p. \Box

Định lí 2 (Dirichlet). Cho số vô tỷ \alpha. Khi đó có vô hạn số hữu tỷ \displaystyle\frac{a}{q} sao cho q>0\displaystyle \left|\alpha-\frac{a}{q}\right|<\frac{1}{q^2}. Hơn nữa ta có thể chọn q lớn tùy ý.

Chứng minh. Ta sẽ xây dựng dãy hữu tỷ thỏa mãn bằng quy nạp.

Với số nguyên Q\geq 1 bất kỳ, theo định lí 1, tồn tại phân số \displaystyle\frac{a}{q} sao cho 1\leq q\leq Q

\displaystyle \left|\alpha-\frac{a}{q}\right|\leq\frac{1}{q(Q+1)}.

Bằng cách thu gọn \displaystyle\frac{a}{q} nếu cần, ta có thể xem phân số này tối giản. Do Q+1>q nên từ bất đẳng thức trên ta có

\displaystyle \left|\alpha-\frac{a}{q}\right|\leq\frac{1}{q(Q+1)}<\frac{1}{q^2}.

Giả sử ta đã xây dựng được dãy các phân số tối giản đôi một khác nhau \displaystyle\frac{a_1}{q_1},\frac{a_2}{q_2},\ldots,\frac{a_m}{q_m} thỏa mãn bất đẳng thức trong định lí. Vì \alpha là số vô tỷ nên |\alpha-a_i/q_i|>0\,\forall i, bởi thế nên ta có thể chọn được số nguyên dương Q để Q>\max \{|\alpha-a_i/q_i|^{-1}\}. Dùng định lí 1 cho  số Q này ta tìm được phân số tối giản \displaystyle\frac{a_{m+1}}{q_{m+1}} sao cho 1\leq q_{m+1}\leq Q

\displaystyle \left|\alpha-\frac{a_{m+1}}{q_{m+1}}\right|\leq\frac{1}{q_{m+1}(Q+1)}<\frac{1}{q_{m+1}^2}.

Phân số này khác tất cả các phân số trước vì

\displaystyle \left|\alpha-\frac{a_{m+1}}{q_{m+1}}\right|\leq\frac{1}{q_{m+1}(Q+1)}<\frac{1}{Q}<\min\{|\alpha-a_i/q_i|\}.

Để kết thúc chỉ cần để ý rằng với mỗi q>1 chỉ có nhiều nhất hai giá trị a làm cho bất đẳng thức trong định lí đúng. \Box

Continue reading “Pell’s equation”