Balkan MO 2016


Bài 1. Tìm tất cả các đơn ánh f: \mathbb R \rightarrow \mathbb R sao cho với mọi số thực x và mọi số nguyên dương n ta có

\displaystyle\left|\sum_{i=1}^n i\left(f(x+i+1)-f(f(x+i))\right)\right|<2016.

Bài 2. Cho ABCD là tứ giác nội tiếp với AB<CD. Các đường chéo cắt nhau tại F và các đường thẳng ADBC cắt nhau tại E. Gọi KL là hình chiếu vuông góc của F trên ADBC tương ứng, và M, S, T là trung điểm của EF, CF, DF tương ứng. Chứng minh rằng giao điểm thứ hai của đường tròn ngoại tiếp tam giác MKT và đường tròn ngoại tiếp tam giác MLS nằm trên CD.

Bài 3. Tìm tất cả các đa thức monic f với hệ số nguyên sao cho tồn tại số nguyên dương N để p chia hết 2(f(p)!)+1 với mọi số nguyên tố p>N thỏa mãn f(p) là số nguyên dương. Continue reading “Balkan MO 2016”

China Team Selection Test 2016 (3)


Đây là phần cuối, mời các bạn xem 2 phần trước ở https://nttuan.org/2016/04/11/topic-771/https://nttuan.org/2016/04/09/topic-769/

—–

Ngày thứ nhất

Bài 13. Cho số nguyên n lớn hơn 1, \alpha là số thực thỏa mãn 0<\alpha < 2, a_1,\ldots ,a_n,c_1,\ldots ,c_n là các số nguyên dương. Với y>0, đặt f(y)=\left(\sum_{a_i\le y} c_ia_i^2\right)^{\frac{1}{2}}+\left(\sum_{a_i>y} c_ia_i^{\alpha} \right)^{\frac{1}{\alpha}}. Với số dương x thỏa mãn x\ge f(y) (với y nào đấy), chứng minh f(x)\le 8^{\frac{1}{\alpha}}\cdot x.

Bài 14. Trong mặt phẳng tọa độ, những điểm với cả hai tọa độ là số hữu tỷ sẽ được gọi là các điểm hữu tỷ. Với mỗi số nguyên dương n, liệu có thể dùng n màu để tô tất cả các điểm hữu tỷ (mỗi điểm tô bởi 1 màu) sao cho mỗi đoạn với các đầu mút là các điểm hữu tỷ chứa các điểm hữu tỷ mang mỗi màu?

Bài 15. Cho tứ giác nội tiếp ABCDAB>BC, AD>DC, I,J là tâm nội tiếp của \triangle ABC,\triangle ADC tương ứng. Đường tròn đường kính AC cắt đoạn IB tại X, và phần kéo dài của JD tại Y. Chứng minh nếu B,I,J,D cùng nằm trên một đường tròn thì XY đối xứng với nhau qua AC. Continue reading “China Team Selection Test 2016 (3)”