Turkey Team Selection Test 2016


Ngày thứ nhất

Bài 1. Cho tam giác nhọn ABC, điểm P được lấy trên đường cao qua A. Các đường thẳng BPCP cắt các cạnh ACAB tại DE tương ứng. Các tiếp tuyến vẽ từ DE của đường tròn ngoại tiếp tam giác BPC tiếp xúc với nó tại KL tương ứng (các điểm này nằm trong tam giác ABC.) Đường thẳng KD cắt đường tròn ngoại tiếp tam giác AKC lần thứ hai tại M, đường thẳng LE cắt đường tròn ngoại tiếp tam giác ALB lần thứ hai tại N. Chứng minh rằng

\dfrac{KD}{MD}=\dfrac{LE}{NE} \Leftrightarrow P là trực tâm của tam giác ABC.

Bài 2. Trong một lớp có 23 học sinh, mỗi cặp học sinh đã xem một bộ phim cùng nhau. Tập các bộ phim mà một học sinh đã xem được gọi là tuyển tập phim của học sinh đó. Biết mỗi học sinh đã xem mỗi bộ phim ít nhất một lần, tìm số nhỏ nhất các tuyển tập phim khác nhau.

Bài 3. Cho các số thực không âm a,b,c thỏa mãn a^2+b^2+c^2 \le 3. Chứng minh rằng (a+b+c)(a+b+c-abc)\ge2(a^2b+b^2c+c^2a).

Ngày thứ hai

Bài 4. Dãy các số thực a_0, a_1, \dots thỏa mãn

\displaystyle \sum\limits_{n=0}^{m}a_n\cdot(-1)^n\cdot\dbinom{m}{n}=0

với mỗi số nguyên dương đủ lớn m. Chứng minh rằng tồn tại đa thức P để a_n=P(n) với mỗi n\ge 0.

Bài 5. Tìm tất cả các hàm số f: \mathbb{N}^* \to \mathbb{N}^* sao cho với mỗi m,n \in \mathbb{N}^* ta có f(mn)=f(m)f(n)m+n \mid f(m)+f(n).

Bài 6. Cho tam giác ABC cân tại A với D là trung điểm của BC. Một đường thẳng qua D cắt AB tại K, AC tại L. Lấy E trên cạnh BC khác D, P trên AE sao cho \angle KPL=90^\circ-\dfrac{1}{2}\angle KALE nằm giữa AP. Đường tròn ngoại tiếp tam giác PDE cắt PK lần thứ hai tại X, PL lần thứ hai tại Y. DX cắt AB tại M, DY cắt AC tại N. Chứng minh rằng bốn điểm P,M,AN cùng nằm trên một đường tròn. Continue reading “Turkey Team Selection Test 2016”

USAJMO 2016


Ngày thứ nhất

Bài 1. Cho \triangle ABC cân tại A nội tiếp đường tròn \omega. Gọi P là một điểm di động trên cung \stackrel{\frown}{BC} không chứa A, I_BI_C là tâm đường tròn nội tiếp của các tam giác \triangle ABP\triangle ACP tương ứng. Chứng minh rằng đường tròn ngoại tiếp của \triangle PI_BI_C đi qua một điểm cố định.

Bài 2. Chứng minh rằng tồn tại số nguyên dương n < 10^6 sao cho 5^n6 chữ số 0 liên tiếp trong biểu diễn thập phân của nó.

Bài 3. Cho X_1, X_2, \ldots, X_{100} là dãy các tập con phân biệt khác rỗng của một tập S sao cho X_i\cap X_{i+1}=\emptysetX_i\cup X_{i+1}\neq S với mỗi i\in\{1, \ldots, 99\}. Tìm giá trị nhỏ nhất của |S|. Continue reading “USAJMO 2016”

USAMO 2016


Ngày thứ nhất

Bài 1. Cho X_1, X_2, \ldots, X_{100} là dãy các tập con phân biệt khác rỗng của một tập S sao cho X_i\cap X_{i+1}=\emptysetX_i\cup X_{i+1}\neq S với mỗi i\in\{1, \ldots, 99\}. Tìm giá trị nhỏ nhất của |S|.

Bài 2. Chứng minh rằng với mỗi số nguyên dương k, số \displaystyle (k^2)!\cdot\displaystyle\prod_{j=0}^{k-1}\frac{j!}{(j+k)!} là một số nguyên.

Bài 3. Cho \triangle ABC nhọn với I_B, I_C,O là tâm đường tròn bàng tiếp đỉnh B, tâm đường tròn bàng tiếp đỉnh C, và tâm đường tròn ngoại tiếp tương ứng. Các điểm EY được lấy trên AC sao cho \angle ABY=\angle CBYBE\perp AC. Các điểm FZ được lấy trên AB sao cho \angle ACZ=\angle BCZCF\perp AB. Các đường thẳng I_BFI_CE cắt nhau tại P. Chứng minh rằng PO\bot YZ. Continue reading “USAMO 2016”