Lớp 9 Chuyên năm học 2019 – 2020: Đề luyện tập số 10


Gửi các em học sinh lớp 8 và 9.   de10_2019 Đề số 9 thầy đã đăng ở đây.

23/02-Hình học


Bài 1. Gọi G là trọng tâm của tam giác vuông ABC với \angle BCA = 90^\circ. Cho P là điểm trên tia AG sao cho \angle CPA = \angle CAB, và Q là điểm trên tia BG sao cho \angle CQB = \angle ABC. Chứng minh rằng các đường tròn ngoại tiếp các tam giác AQGBPG cắt nhau tại một điểm trên AB.
Bài 2. Cho tam giác ABC, và cho D, A, B, E là các điểm nằm trên đường thẳng AB theo thứ tự đó sao cho AC=ADBE=BC. Cho \omega_1, \omega_2 là các đường tròn ngoại tiếp của các tam giác \triangle ABC\triangle CDE, tương ứng, hai đường tròn này cắt nhau tại F \neq C. Nếu tiếp tuyến của \omega_2 tại F cắt \omega_1 tại G, và chân đường cao hạ từ G đến FCH, chứng minh \angle AGH=\angle BGH.
Bài 3. Gọi O là tâm đường tròn ngoại tiếp tam giác nhọn ABC. Điểm P trên cạnh AB sao cho \angle BOP = \angle ABC, và điểm Q trên cạnh AC sao cho \angle COQ = \angle ACB. Chứng minh rằng đường thẳng đối xứng với BC qua PQ tiếp xúc với đường tròn ngoại tiếp tam giác APQ.
Bài 4. Cho ABCD là tứ giác nội tiếp trong đường tròn \omega, các đường chéo cắt nhau tại F. Các đường thẳng ABCD cắt nhau tại E. Đoạn EF giao \omega tại X. Các đường thẳng BXCD cắt nhau tại M, các đường thẳng CXAB cắt nhau tại N. Chứng minh rằng MNBC đồng quy với tiếp tuyến của \omega tại X. Continue reading “23/02-Hình học”