Đáp án các đề thi vào 10, môn Toán, KHTN HN, 1989-2005


Mấy hôm trước tôi có đăng đề thi vào lớp 10, KHTN từ năm 1989 đến 2005. Đây là đáp án của các đề đó.

China National Olympiad 2010


1. Các đường tròn \Gamma_1\Gamma_2 cắt nhau tại hai điểm AB. Một đường thẳng qua B cắt \Gamma_1\Gamma_2 tại các điểm C and D tương ứng. Đường thẳng qua B khác cắt \Gamma_1\Gamma_2 tại các điểm E and F tương ứng. Đường thẳng CF cắt \Gamma_1\Gamma_2 tại các điểm P and Q tương ứng. Cho MN là trung điểm của các cung nhỏ \widehat{PB}\widehat{QB}. Chứng minh rằng nếu CD=EF, thì C, F, M, N đồng viên.

2. Cho k \ge 3 là một số nguyên. Dãy \{ a_n \} được xác định như sau: a_{k}=2k, và với mỗi n > k, a_{n}=a_{n-1}+1, nếu (a_{n -1},n)=1;a_{n}=2n, nếu (a_{n-1},n) > 1. Chứng minh rằng dãy \{ a_n-a_{n-1} \} chứa vô hạn số nguyên tố.

3. a,bc là các số phức thoả mãn với mỗi số phức z, nếu |z| \le 1, thì |az^2+bz+c| \le 1. Tìm giá trị lớn nhất của |bc|.

4. mn là các số nguyên cho trước lớn hơn 1. {a_1} < {a_2} < \cdots < {a_m} là các số nguyên cho trước. Chứng minh rằng tồn tại một tập con của \mathbb Z ký hiệu bởi T, sao cho |T| \le 1+\dfrac {a_{m}-a_1}{2n+1} và với mỗi i \in \{ 1,2,...,m \}, tồn tại t\in Ts\in [-n,n] thoả mãn a_{i}=t+s.

5. Ta có thể di chuyển các tấm thẻ tại các điểm A_1, A_2, \cdots ,A_n và điểm O. Một bước di chuyển có thể thực hiện như sau:

(1) Nếu có ít nhất 3 tấm thẻ tại điểm A_i (1 \le i \le n), thì lấy 3 tấm thẻ từ A_i và đặt chúng vào các điểm A_{i-1}, A_{i+1}O, tương ứng. (A_0=A_n, A_{n+1}=A_1)

(2) Nếu có ít nhất n tấm thể tại O, thì lấy n tấm thẻ từ điểm O và đặt chúng vào các điểm A_1, A_2, \cdots ,A_n, tương ứng.

Chứng minh rằng nếu có không ít hơn n^2+3n+1 tấm thể trên toàn bộ n+1 điểm, thì ta có thể thực hiện một số hữu hạn các di chuyển trên để có không ít hơn n+1 tấm thẻ tại mỗi điểm.

6. Cho a_1,a_2,a_3,b_1,b_2,b_3 là các số nguyên dương đôi một khác nhau sao cho với mỗi số nguyên dương n,

(n+ 1)a_{1}^{n}+{n}a_{2}^{n}+(n-1)a_{3}^{n} | (n+1)b_{1}^{n}+{n}b_{2}^{n}+(n-1)b_{3}^{n}.

Chứng minh rằng có số nguyên dương k sao cho b_i =k{a_i} với i=1,2,3.