Đề thi chọn HSG Quốc gia của Trung Quốc năm 2017 (China MO 2017)


Ngày thứ nhất

Bài 1. Hai dãy số \{u_{n}\}, \{v_{n}\} xác định bởi u_{0} =u_{1} =1 ,u_{n}=2u_{n-1}-3u_{n-2} (n\geq 2)v_{0} =a, v_{1} =b , v_{2}=c ,v_{n}=v_{n-1}-3v_{n-2}+27v_{n-3} (n\geq 3). Giả sử có số nguyên dương N sao cho với n> N ta có u_{n}|v_{n}. Chứng minh rằng 3a=2b+c.

Bài 2. Cho tam giác nhọn ABC với \odot O là đường tròn ngoại tiếp và \odot I là đường tròn nội tiếp của nó. Các tiếp tuyến tại B,C của \odot O cắt nhau tại L, \odot I tiếp xúc với BC tại D. AY vuông góc với BC tại Y, AO cắt BC tại X, và OI cắt \odot O tại P,Q. Chứng minh P,Q,X,Y cùng nằm trên một đường tròn khi và chỉ khi A,D,L là thẳng hàng.

Bài 3. Một hình chữ nhật R được phân hoạch thành 2016 hình chữ nhật con sao cho các cạnh của các hình chữ nhật con cùng phương với các cạnh của R. Các đỉnh của các hình chữ nhật con sẽ được gọi là các điểm. Mỗi đoạn cùng phương với các cạnh của R nối hai điểm được gọi là cơ bản nếu nó không chứa điểm khác. Tìm số nhỏ nhất, lớn nhất các đoạn cơ bản. Continue reading “Đề thi chọn HSG Quốc gia của Trung Quốc năm 2017 (China MO 2017)”