Bulgaria MO 2016


Ngày thứ nhất
Bài 1. Tìm tất cả các số nguyên dương \displaystyle m\displaystyle n sao cho \displaystyle (2^{2^{n}}+1)(2^{2^{m}}+1) chia hết cho \displaystyle m\cdot n .
Bài 2. Trong một cuộc thi toán có \displaystyle n học sinh tham gia, mỗi học sinh phải giải \displaystyle 6 bài toán, mỗi bài toán có \displaystyle 3 câu trả lời. Sau khi chấm bài, ban tổ chức thấy rằng với mỗi hai học sinh, số bài toán mà họ có cùng câu trả lời là \displaystyle 0 hoặc \displaystyle 2. Tìm giá trị lớn nhất của \displaystyle n.
Bài 3. Cho các số thực dương a,b,c,d. Chứng minh rằng
\displaystyle \frac {a+\sqrt{ab}+\sqrt[3]{abc}+\sqrt[4]{abcd}}{4} \leq \sqrt[4]{a.\frac{a+b}{2}.\frac{a+b+c}{3}.\frac{a+b+c+d}{4}}.

Continue reading “Bulgaria MO 2016”

Analyzing Squares (1)


Problem 1. Let a,b,c be positive real numbers. Prove that

\displaystyle\frac{a^3}{a^2+2b^2}+\frac{b^3}{b^2+2c^2}+\frac{c^3}{c^2+2a^2}\geq \frac{a^3}{2a^2+b^2}+\frac{b^3}{2b^2+c^2}+\frac{c^3}{2c^2+a^2}.

Problem 2. Let a,b,c be positive real numbers such that a^2+b^2+c^2=1. Prove that \displaystyle a+b+c+\frac{1}{abc}\geq 4\sqrt{3}.

Problem 3. Let a,b,c be non-negative real nunbers. Prove that

\displaystyle a^3+b^3+c^3+3abc\geq ab\sqrt{2a^2+2b^2}+bc\sqrt{2b^2+2c^2}+ca\sqrt{2c^2+2a^2}.

Problem 4. Let a,b,c be positive real nunbers such that abc=1. Prove that \displaystyle \frac{1}{(1+a)^3}+\frac{1}{(1+b)^3}+\frac{1}{(1+c)^3}+\frac{5}{(1+a)(1+b)(1+c)}\geq 1.

Problem 5. Let a,b,c be real numbers such that a,b,c\geq 1 and a+b+c=9. Prove that \sqrt{ab+bc+ca}\leq\sqrt{a}+\sqrt{b}+\sqrt{c}. Continue reading “Analyzing Squares (1)”