Japan MO Finals 2019


Bài 1. Tìm tất cả các bộ ba các số nguyên dương \displaystyle (a,\ b,\ c) sao cho
\displaystyle a^2+b+3=(b^2-c^2)^2.
Bài 2. Cho số nguyên lẻ \displaystyle n\geq 3. Ta sẽ chơi một trò chơi trên bảng vuông \displaystyle n\times n như sau: Ở mỗi bước ta chọn một ô vuông con chưa được viết số và viết vào đó một số nguyên thuộc tập \displaystyle [n^2], mỗi số nguyên được dùng đúng một lần. Như vậy trò chơi sẽ kết thúc sau \displaystyle n^2 bước. Khi kết thúc, với mỗi ô vuông con, nếu hàng hoặc cột chứa nó có tổng các số chia hết cho \displaystyle n thì ta nhận được \displaystyle 1 điểm (nếu cả hai có tổng các số trên đó chia hết cho \displaystyle n thì ta có \displaystyle 2 điểm). Hỏi ta có thể nhận được nhiều nhất bao nhiêu điểm?
Bài 3. Tìm tất cả các hàm số \displaystyle f:(0;+\infty)\to (0;+\infty) sao cho
\displaystyle f\left(\frac{f(y)}{f(x)}+1\right)=f\left(x+\frac{y}{x}+1\right)-f(x),\quad \forall x;y\in (0;+\infty).
Bài 4. Cho tam giác \displaystyle ABC với tâm nội tiếp \displaystyle I, đường tròn nội tiếp \displaystyle w, và \displaystyle M là trung điểm của \displaystyle BC. Đường thẳng qua \displaystyle A vuông góc với \displaystyle BC cắt đường thẳng qua \displaystyle M vuông góc với \displaystyle AI tại \displaystyle K. Chứng minh rằng đường tròn đường kính \displaystyle AK tiếp xúc với \displaystyle w. Continue reading “Japan MO Finals 2019”