IMO Shortlist 2015 – Geometry


Mọi người xem hai phần trước ở https://nttuan.org/2016/08/20/topic-811/https://nttuan.org/2016/08/06/topic-807/ nhé!

G1. Cho tam giác nhọn ABC với trực tâm H. Gọi G là điểm sao cho ABGH là một hình bình hành. Gọi I là điểm trên đường thẳng GH sao cho AC chia đôi HI. Giả sử đường thẳng AC cắt đường tròn ngoại tiếp tam giác GCI tại CJ. Chứng minh IJ = AH.

G2. Tam giác ABC có đường tròn ngoại tiếp \Omega và tâm đường tròn ngoại tiếp O. Một đường tròn \Gamma tâm A cắt đoạn BC tại DE sao cho B, D, E, và C khác nhau và nằm trên BC theo thứ tự này. Cho FG là giao điểm của \Gamma\Omega sao cho A, F, B, C, và G nằm trên \Omega theo thứ tự này. Gọi K là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BDF và đoạn AB. Gọi L là giao điểm thứ hai của đường tròn ngoại tiếp tam giác CGE và đoạn CA. Giả sử FKGL cắt nhau tại X. Chứng minh rằng X thuộc AO.

G3. Cho tam giác ABC với \angle{C} = 90^{\circ}, và H là chân đường cao qua C. Chọn điểm D bên trong tam giác CBH sao cho CH chia đôi AD. Gọi P là giao điểm của hai đường thẳng BDCH. Gọi \omega là nửa đường tròn đường kính BD cắt đoạn CB tại một điểm nằm trong. Một đường thẳng qua P tiếp xúc với \omega tại Q. Chứng minh CQAD cắt nhau trên \omega.

G4. Cho tam giác nhọn ABCM là trung điểm của AC. Một đường tròn \omega qua BM cắt các cạnh ABBC lần lượt tại PQ. Gọi T là điểm sao cho BPTQ là một hình bình hành. Giả sử rằng T nằm trên đường tròn ngoại tiếp tam giác ABC. Tính \dfrac{BT}{BM}.

G5. Cho tam giác ABC với CA \neq CB. Gọi D, F, và G lần lượt là trung điểm của AB, AC, và BC. Một đường tròn \Gamma qua C và tiếp xúc với AB tại D cắt đoạn AF và đoạn BG lần lượt tại HI. Các điểm H'I' đối xứng với HI qua FG, tương ứng. Đường thẳng H'I' cắt CDFG lần lượt tại QM. Đường thẳng CM cắt \Gamma lần hai tại P. Chứng minh CQ = QP.

G6. Cho tam giác nhọn ABC với AB > AC. Gọi \Gamma là đường tròn ngoại tiếp, H là trực tâm, và F là chân đường cao qua A của tam giác ABC. Gọi M là trung điểm của BC. Gọi Q là điểm trên \Gamma sao cho \angle HQA = 90^{\circ}K là điểm trên \Gamma sao cho \angle HKQ = 90^{\circ}. Giả sử rằng A, B, C, KQ khác nhau và nằm trên \Gamma theo thứ tự này. Chứng minh đường tròn ngoại tiếp tam giác KQH tiếp xúc với đường tròn ngoại tiếp tam giác FKM. Continue reading “IMO Shortlist 2015 – Geometry”

IMO Shortlist 2015 – Combinatorics


Mọi người xem phần đầu ở đây nhé: Algebra https://nttuan.org/2016/08/06/topic-807/. Dưới đây là phần Tổ hợp.

C1. Ở Lineland có n\geq1 thị trấn, được sắp xếp dọc một con đường từ trái sang phải. Mỗi thị trấn có một xe ủi trái (đặt bên trái của thị trấn và hướng sang trái) và một xe ủi phải (đặt bên phải của thị trấn và hướng sang phải). Kích thước của 2n xe ủi là đôi một khác nhau. Tại mỗi thời điểm khi một xe ủi trái đối diện một xe ủi phải, xe lớn hơn sẽ đẩy xe nhỏ hơn ra khỏi đường. Mặt khác, các xe ủi sẽ không được bảo vệ đằng sau; vì vậy, nếu một xe ủi húc vào đuôi của xe khác thì nó sẽ đẩy xe bị húc ra khỏi đường. Cho AB là hai thị trấn, với B nằm bên phải A. Ta nói A có thể quét B biến mất nếu xe ủi phải của A có thể di chuyển đến B và đẩy tất cả xe ủi mà nó gặp ra khỏi đường. Tương tự, B có thể quét A biến mất nếu xe ủi trái của B có thể di chuyển tới A và đẩy tất cả xe ủi mà nó gặp ra khỏi đường. Chứng minh rằng có đúng một thị trấn không bị quét biến mất bởi mỗi thì trấn còn lại.

C2. Ta nói tập hữu hạn \mathcal{S} các điểm trong mặt phẳng là cân bằng nếu với mỗi hai điểm khác nhau AB trong \mathcal{S}, tồn tại C trong \mathcal{S} sao cho AC=BC. Ta nói \mathcal{S}không tâm nếu với mỗi ba điểm phân biệt A, BC của \mathcal{S}, không tồn tại P trong \mathcal{S} sao cho PA=PB=PC.

(a) Chứng minh rằng với mỗi n\ge 3, tồn tại tập cân bằng chứa n điểm.

(b) Xác định tất cả n\ge 3 sao cho tồn tại tập cân bằng và không tâm chứa n điểm.

C3. Với tập hữu hạn các số nguyên dương A, một phân hoạch của A thành hai tập con khác rỗng A_1, A_2 được gọi là tốt nếu bội chung nhỏ nhất của các phần tử trong A_1 bằng ước chung lớn nhất của các phần tử trong A_2. Tìm số nguyên dương n nhỏ nhất sao cho tồn tại tập gồm n số nguyên dương với đúng 2015 phân hoạch tốt.

C4. Cho số nguyên dương n. Hai người chơi AB chơi một trò chơi chọn các số nguyên dương k \le n. Luật chơi là:

(i) Người chơi không được chọn số đã được chọn ở các bước trước.

(ii) Người chơi không được chọn số liên tiếp với các số đã được người đó chọn ở các bước trước.

(iii) Trò chơi sẽ kết thúc với kết quả hòa nếu không còn số nào để chọn; trong trường hợp còn lại, ai không chọn được sẽ thua.

A đi trước. Xác định kết quả của trò chơi, giả sử rằng cả hai cùng chơi giỏi.

C5. Cho dãy các số nguyên a_1,a_2,\dots thỏa mãn đồng thời hai điều kiện:

(i) 1\le a_j\le2015 với mỗi j\ge1,

(ii) k+a_k\neq \ell+a_\ell với mỗi 1\le k<\ell.

Chứng minh rằng tồn tại hai số nguyên dương bN sao cho

\displaystyle \left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\le1007^2 với mỗi hai số mn thỏa mãn n>m\ge N. Continue reading “IMO Shortlist 2015 – Combinatorics”

IMO Shortlist 2015 – Algebra


Trong topic này và 3 topic sau tôi sẽ dịch các bài toán từ IMO Shortlist 2015.

A1. Dãy a_1,a_2,\ldots các số thực dương thỏa mãn

a_{k+1}\geq\dfrac{ka_k}{a_k^2+(k-1)} với mọi số nguyên dương k. Chứng minh rằng a_1+a_2+\ldots+a_n\geq n với mọi n\geq 2.

A2. Tìm tất cả các hàm f:\mathbb{Z}\rightarrow\mathbb{Z} sao cho

f(x-f(y))=f(f(x))-f(y)-1\,\,\forall x,y\in\mathbb{Z}.

A3. Cho số nguyên dương n. Tìm giá trị lớn nhất của

\displaystyle\sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, ở đây -1 \le x_i \le 1 với mỗi i = 1, \cdots 2n.

A4. Tìm tất cả các hàm f:\mathbb R\to\mathbb R sao cho

f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\,\,\forall x,y\in\mathbb{R}.

A5. Kí hiệu 2\mathbb{Z} + 1 là tập các số nguyên lẻ. Tìm tất cả các hàm f:\mathbb{Z} \to 2\mathbb{Z} + 1 sao cho

f(x + f(x) + y) + f(x - f(x) - y) = f(x+y) + f(x-y)\,\,\forall x, y \in \mathbb{Z}. Continue reading “IMO Shortlist 2015 – Algebra”