T-Math 1


Bài 1. Cho dãy số (x_n)_{n\geq 1} xác định bởi
x_1=x_2=1,\,\, x_{n+1}=x_n+\frac{2\sqrt{x_{n-1}}}{n^3}\,\,\forall n\geq 2. Chứng minh x_n<\dfrac{25}{4}\,\,\forall n\geq 1.
Bài 2. Tìm tất cả các số nguyên dương n sao cho có một hoán vị (p_1,p_2,...,p_n) của \{1,2,...,n\} để \{p_1 +1, p_2 + 2,..., p_n +n\}\{p_1-1, p_2-2,...,p_n -n\} là các hệ thặng dư đầy đủ modulo n.
Bài 3. Cho A là một tập hữu hạn các số thực dương, B = \{\dfrac{x}{y}\mid x,y\in A\}C = \{xy\mid x,y\in A\}. Chứng minh |A|\cdot|B|\le|C|^2.
Bài 4. Cho tứ giác nội tiếp ABCD với O_1,O_2 là tâm đường tròn nội tiếp của các tam giác ABC,ABD tương ứng. Đường thẳng O_1O_2 cắt các đoạn thẳng BC,AD tại E,F tương ứng.
a) Chứng minh có đường tròn \Gamma tiếp xúc với các đường thẳng BC,AD tại E,F tương ứng;
b) Chứng minh \Gamma cũng tiếp xúc với đường tròn ngoại tiếp tứ giác ABCD.

Continue reading “T-Math 1”