Functional inequalities (1)


Problem 1. Find all functions f:\mathbb{R}\to\mathbb{R} such that

\displaystyle \frac{1}{2}f(xy)+\frac{1}{2}f(xz)-f(x)f(yz)\geq\frac{1}{4}\,\,\forall x,y,z\in\mathbb{R}.

Problem 2. Let f:(0;+\infty)\to (0;+\infty) be a function such that

f(2x)\geq x+f(f(x))\,\,\forall x\in (0;+\infty). Prove that f(x)\geq x\,\,\forall x\in (0;+\infty).

Problem 3. Let f:\mathbb{R}\to\mathbb{R} be a function such that

f(x+19)-19\leq f(x)\leq f(x+94)-94\,\,\forall x\in\mathbb{R}. Prove that f(x+1)=f(x)+1\,\,\forall x\in\mathbb{R}.

Problem 4. Find all functions f:[1;+\infty)\to [1;+\infty) such that

f(x)\leq 2x+2\,\,\text{and}\,\, xf(x+1)=f^2(x)-1\,\,\forall x\in [1;+\infty).

Problem 5. Find all functions f:\mathbb{N}\to \mathbb{N} such that

mf(n)+nf(m)=(m+n)f(m^2+n^2)\,\,\forall m,n\in \mathbb{N}.

Problem 6. Find all injective mappings f:\mathbb{N}^*\to\mathbb{N}^* such that for all positive integers n the following relation holds: f(f(n)) \leq \dfrac {n+f(n)}{2}.

Problem 7. Find all surjective mappings f:\mathbb{N}^*\to\mathbb{N}^* such that for all positive integers n the following relation holds: f(n) \geq n+(-1)^n. Continue reading “Functional inequalities (1)”

Functional Equations – 7/2016


Bài 1. Xác định tất cả các đa thức P(x) với hệ số thực sao cho đa thức (x+1)P(x-1)-(x-1)P(x) là đa thức hằng.

Bài 2. Tìm tất cả các hàm f : \mathbb{R}\to\mathbb{R} sao cho các điều kiện sau được thỏa mãn đồng thời:

(a) f(x) \ge 0\,\,\forall x \in \mathbb{R};

(b) Với a, b, c, d \in \mathbb{R} có tính chất ab + bc + cd = 0 , ta có f(a-b) + f(c-d) = f(a) + f(b+c) + f(d).

Bài 3. Tìm tất cả các hàm f:\mathbb{R}\to\mathbb{R} sao cho

f(x(1+y)) = f(x)(1 + f(y))\,\,\forall x,y\in\mathbb{R}.

Bài 4. Tìm tất cả các hàm f:\mathbb{R}\rightarrow \mathbb{R} sao cho f(0) \in \mathbb Qf(x+f(y)^2 ) = {f(x+y)}^2\,\,\forall x,y\in\mathbb{R}. Continue reading “Functional Equations – 7/2016”

China Team Selection Test 2016 (3)


Đây là phần cuối, mời các bạn xem 2 phần trước ở https://nttuan.org/2016/04/11/topic-771/https://nttuan.org/2016/04/09/topic-769/

—–

Ngày thứ nhất

Bài 13. Cho số nguyên n lớn hơn 1, \alpha là số thực thỏa mãn 0<\alpha < 2, a_1,\ldots ,a_n,c_1,\ldots ,c_n là các số nguyên dương. Với y>0, đặt f(y)=\left(\sum_{a_i\le y} c_ia_i^2\right)^{\frac{1}{2}}+\left(\sum_{a_i>y} c_ia_i^{\alpha} \right)^{\frac{1}{\alpha}}. Với số dương x thỏa mãn x\ge f(y) (với y nào đấy), chứng minh f(x)\le 8^{\frac{1}{\alpha}}\cdot x.

Bài 14. Trong mặt phẳng tọa độ, những điểm với cả hai tọa độ là số hữu tỷ sẽ được gọi là các điểm hữu tỷ. Với mỗi số nguyên dương n, liệu có thể dùng n màu để tô tất cả các điểm hữu tỷ (mỗi điểm tô bởi 1 màu) sao cho mỗi đoạn với các đầu mút là các điểm hữu tỷ chứa các điểm hữu tỷ mang mỗi màu?

Bài 15. Cho tứ giác nội tiếp ABCDAB>BC, AD>DC, I,J là tâm nội tiếp của \triangle ABC,\triangle ADC tương ứng. Đường tròn đường kính AC cắt đoạn IB tại X, và phần kéo dài của JD tại Y. Chứng minh nếu B,I,J,D cùng nằm trên một đường tròn thì XY đối xứng với nhau qua AC. Continue reading “China Team Selection Test 2016 (3)”

Toàn ánh


Bài 1. Tìm tất cả các hàm f:\mathbb{R}\rightarrow \mathbb{R} thỏa mãn
f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)\,\,\forall x,y\in\mathbb{R}.
Bài 2. Tìm tất cả các toàn ánh f:(0,+\infty) \to (0,+\infty) sao cho 2x f(f(x)) = f(x)(x+f(f(x))) với mỗi x>0.
Bài 3. Cho hàm số f\colon \mathbb{R}\to\mathbb{Z} xác định bởi f(x)=[x{\cdot }\{ x\}]\,\,\forall x\in\mathbb{R}.
1) Chứng minh f là toàn ánh;
2) Tìm nghiệm của phương trình [ x[x] ]=[x{\cdot }\{ x\}].
Bài 4. Tìm tất cả các toàn ánh f:\mathbb{N}^*\to\mathbb{N}^* sao cho với mỗi số nguyên dương ab, đúng một trong hai đẳng thức sau là đúng
f(a)=f(b),\,\, f(a+b)=\min\{f(a),f(b)\}. Continue reading “Toàn ánh”

T-Math 2


Bài 1. Tìm tất cả các hàm số f:\mathbb{R}\to\mathbb{R} thỏa mãn đồng thời hai điều kiện
a) f(f(x^2)+y+f(y))=x^2+2f(y)\,\,\,\,\forall x,y\in\mathbb{R}.
b) \forall x,y\in\mathbb{R}, nếu x<y thì f(x)\leq f(y).
Bài 2. Hai đường tròn K_1,K_2 khác bán kính cắt nhau tại hai điểm phân biệt A,B. Gọi C,D lần lượt là hai điểm trên K_1,K_2 tương ứng sao cho A là trung điểm của CD. Kéo dài DB đến cắt K_1 tại E, kéo dài CB đến cắt K_2 tại F. Gọi l_1,l_2 lần lượt là trung trực của CD,EF.
a) Chứng minh rằng l_1,l_2 cắt nhau. Gọi P là giao điểm của chúng;
b) Chứng minh rằng CA,AP,PE là độ dài các cạnh của một tam giác vuông. Continue reading “T-Math 2”

Đề thi chọn HSG lớp 12 của Hà Nội (môn Toán, năm học 2014 – 2015)


Bài 1. (5 điểm) Cho (C):y=\dfrac{2x-1}{x+1}.
1) Xét một điểm M trên (C). Tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại hai điểm A,B. Chứng minh rằng diện tích tam giác AIB không phụ thuộc M (ở đây I là giao của hai tiệm cận);
2) Tìm các cặp tiếp tuyến song song của (C) sao cho khoảng cách giữa chúng lớn nhất. Continue reading “Đề thi chọn HSG lớp 12 của Hà Nội (môn Toán, năm học 2014 – 2015)”

Đề thi chọn HSG lớp 12 của Hà Nội (môn Toán, năm học 2013 – 2014)


Bài 1. (5 điểm) Cho hàm số y=x^3-3x+4 có đồ thị (C).
a) Tìm các điểm M,N\in (C) sao cho I(-1/2;2) là trung điểm của MN;
b) Cho ba điểm phân biệt A,B,C\in (C). Các tiếp tuyến của (C) tại A,B,C cắt (C) tại điểm thứ hai A',B',C' tương ứng. Chứng minh rằng nếu A,B,C thẳng hàng thì A',B',C' cũng thế. Continue reading “Đề thi chọn HSG lớp 12 của Hà Nội (môn Toán, năm học 2013 – 2014)”

Đề thi chọn HSG lớp 12 của Hà Nội (môn Toán, năm học 2011 – 2012)


Bài 1. (5 điểm)
1) Giải phương trình x^4+\sqrt{1-x^2}=1;
2) Giải hệ phương trình \begin{cases} x^2+y^2=2xy+1\\ x^5+y^3+1=0.\end{cases}
Bài 2. (4 điểm) Cho P=x^2y+y^2z+z^2x với x,y,z >0. Chứng minh rằng
1) P\geq 3 khi xyz=1.
2) P< \dfrac{4}{27} khi x+y+z=1. Continue reading “Đề thi chọn HSG lớp 12 của Hà Nội (môn Toán, năm học 2011 – 2012)”

Một số bài tập hệ phương trình có thể giải bằng phương pháp hàm số


Các bạn nghỉ học hôm nay lấy về làm các em nhé!

Continue reading “Một số bài tập hệ phương trình có thể giải bằng phương pháp hàm số”