China Team Selection Test 2016 (3)


Đây là phần cuối, mời các bạn xem 2 phần trước ở https://nttuan.org/2016/04/11/topic-771/https://nttuan.org/2016/04/09/topic-769/

—–

Ngày thứ nhất

Bài 13. Cho số nguyên n lớn hơn 1, \alpha là số thực thỏa mãn 0<\alpha < 2, a_1,\ldots ,a_n,c_1,\ldots ,c_n là các số nguyên dương. Với y>0, đặt f(y)=\left(\sum_{a_i\le y} c_ia_i^2\right)^{\frac{1}{2}}+\left(\sum_{a_i>y} c_ia_i^{\alpha} \right)^{\frac{1}{\alpha}}. Với số dương x thỏa mãn x\ge f(y) (với y nào đấy), chứng minh f(x)\le 8^{\frac{1}{\alpha}}\cdot x.

Bài 14. Trong mặt phẳng tọa độ, những điểm với cả hai tọa độ là số hữu tỷ sẽ được gọi là các điểm hữu tỷ. Với mỗi số nguyên dương n, liệu có thể dùng n màu để tô tất cả các điểm hữu tỷ (mỗi điểm tô bởi 1 màu) sao cho mỗi đoạn với các đầu mút là các điểm hữu tỷ chứa các điểm hữu tỷ mang mỗi màu?

Bài 15. Cho tứ giác nội tiếp ABCDAB>BC, AD>DC, I,J là tâm nội tiếp của \triangle ABC,\triangle ADC tương ứng. Đường tròn đường kính AC cắt đoạn IB tại X, và phần kéo dài của JD tại Y. Chứng minh nếu B,I,J,D cùng nằm trên một đường tròn thì XY đối xứng với nhau qua AC. Continue reading “China Team Selection Test 2016 (3)”

China Team Selection Test 2016 (2)


Mời các bạn xem phần trước ở https://nttuan.org/2016/04/09/topic-769/

—–

Ngày thứ nhất

Bài 7. Cho P là một điểm nằm trong tam giác nhọn ABC. D,E,F là các điểm đối xứng với P qua BC,CA,AB tương ứng. Các tia AP,BP,CP cắt lại đường tròn ngoại tiếp \triangle ABC tại L,M,N tương ứng. Chứng minh rằng các đường tròn ngoại tiếp của \triangle PDL,\triangle PEM,\triangle PFN cùng đi qua một điểm T khác P.

Bài 8. Tìm số thực dương \lambda nhỏ nhất sao cho với mỗi 12 điểm P_1,P_2,\ldots,P_{12} trên mặt phẳng, nếu khoảng cách giữa hai điểm bất kỳ không vượt quá 1 thì \displaystyle\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda.

Bài 9. Cho P là một tập hữu hạn gồm các số nguyên tố, A là một tập vô hạn gồm các số nguyên dương sao cho mọi phần tử của A có ít nhất một ước nguyên tố không nằm trong P. Chứng minh rằng tồn tại tập con vô hạn B của A thỏa mãn tổng của các phần tử trong mỗi tập con hữu hạn của B có ít nhất một ước nguyên tố không nằm trong P. Continue reading “China Team Selection Test 2016 (2)”

Final Korean Mathematical Olympiad 2016


Ngày thứ nhất

Bài 1. Cho tam giác nhọn ABC. Gọi D, E tương ứng là chân các đường cao qua B,C của tam giác. Gọi S,T lần lượt là các điểm đối xứng với E qua AC, BC. Đường tròn ngoại tiếp của \triangle CST cắt lại AC tại X (\not= C). Ký hiệu tâm của đường tròn ngoại tiếp \triangle CSTO. Chứng minh XO \perp DE.

Bài 2. Cho hai số nguyên n, k thỏa mãn n \ge 2k \ge \dfrac{5}{2}n-1. Chứng minh rằng với mỗi k điểm lưới với tọa độ (x;y) thỏa mãn x,y\in [n], tồn tại một đường tròn đi qua ít nhất 4 trong chúng.

Bài 3. Chứng minh rằng với mọi số hữu tỷ x,y ta luôn có x-\dfrac{1}{x}+y-\dfrac{1}{y}\not=4. Continue reading “Final Korean Mathematical Olympiad 2016”