Đề thi tuyển sinh vào lớp 10, môn Toán, khối phổ thông chuyên Ngữ, DHQG HN


Đây là vài đề thi tuyển sinh vào 10, môn Toán, chuyên Ngữ.

Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chung, năm học 1999-2000


Thời gian làm bài: 150 phút

Bài 1.

Cho biểu thức

P=\left(\dfrac{\sqrt{x}(\sqrt{x}+2)^2}{(\sqrt{x}+1)^2+3}-\dfrac{4}{2-\sqrt{x}}+\dfrac{8\sqrt{x}+32}{8-x\sqrt{x}}\right):\left(1-\dfrac{2}{2+\sqrt{x}}\right).

a)Rút gọn P;

b)Tính P nếu x=9-4\sqrt{5};

c)Tìm các giá trị chính phương của x để P nhận giá trị nguyên.

Bài 2.

Cho phương trình x^2-(m-1)x-m^2+m-2=0.

a)Giải phương trình với m=2;

b)Chứng minh rằng phương trình trên có hai nghiệm trái dấu nhau với mỗi m;

c)Gọi hai nghiệm là x_1,x_2. Tìm m để biểu thức

A=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3

đạt giá trị lớn nhất.

Bài 3.

Cho đường tròn (O) bán kính R, A,B là hai điểm thuộc đường tròn đó AB<2R. C là một điểm thuộc tia AB và nằm ngoài đường tròn. Gọi Q là điểm chính giữa của cung nhỏ AB, qua Q kẻ đường kính PQ cắt AB tại D. Nối CP cắt đường tròn tại điểm thứ hai I khác P. QI cắt AC tại K.

a)Chứng minh rằng PDKI nội tiếp;

b)Nối APAI, chứng minh tam giác API đồng dạng với tam giác CBI;

c)Đường thẳng QC cắt (O) tại điểm thứ hai M khác Q. Chứng minh M thuộc đường tròn đi qua ba điểm K,I,C.

Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chuyên, năm học 2008-2009


Thời gian làm bài: 150 phút

Bài 1.

Cho biểu thức A=\dfrac{3(x+\sqrt{x}-1)}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1} với x\geq 0,x\not =1.

a)Rút gọn biểu thức A;

b)Tìm các giá trị nguyên của x để A>3.

Bài 2.

a)Giải hệ phương trình \begin{cases}y-5|x-1|-3=0\\ 2x-|y|+1=0.\end{cases}

b)Tìm m để phương trình x^4-2mx^2+m^2-25=0 có bốn nghiệm phân biệt. Khi đó, gọi các nghiệm là x_1,x_2,x_3,x_4. Chứng minh rằng biểu thức

\dfrac{1}{x_1x_2x_3}+\dfrac{1}{x_2x_3x_4}+\dfrac{1}{x_3x_4x_1}+\dfrac{1}{x_4x_1x_2} có giá trị không phụ thuộc m.

Bài 3.

Trong Oxy cho ba đường thẳng (d_1):3x+4y-4=0; (d_2):y=x+1(d_3):5x+2y-16=0. Ba đường thẳng này tạo thành một tam giác, tính toạ độ các đỉnh của tam giác này và diện tích của nó(đơn vị đo trên các trục là xentimét.)

Bài 4.

Cho hình vuông ABCD, lấy điểm M tuỳ ý trên cạnh BC(M\not =B). Tia AM cắt tia DC tại N. Chứng minh rằng giá trị biểu thức \dfrac{1}{AM^2}+\dfrac{1}{AN^2} không phụ thuộc vào cách chọn M trên cạnh BC.

Bài 5.

Cho tam giác nhọn ABC nội tiếp (O;R). Trên cung nhỏ BC lấy M tuỳ ý khác BC. Kẻ MI vuông góc với ABMH vuông góc với BC. Gọi K là giao điểm của hai đường thẳng IHAC.

a)Chứng minh rằng MK vuông góc với AC;

b)Kẻ AE vuông góc với BC. Tính theo R giá trị của \dfrac{AB\cdot AC}{AE};

c)Tìm vị trí của M trên cung nhỏ BC để IK lớn nhất.

Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chuyên, năm học 2007-2008


Thời gian làm bài: 150 phút

Bài 1.

a)Cho m=\sqrt{2}+\sqrt{3}+\sqrt{5}n=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}. So sánh mn.

b)Cho ba số thực dương a,b,c thoả mãn a+b+c=1. Rút gọn biểu thức

M=a+b-\sqrt{\dfrac{(a+bc)(b+ca)}{c+ab}}.

Bài 2.

a)Giải phương trình x^2+\sqrt{x+1}=1;

b)Tìm các giá trị k để hai phương trình x^2+kx+1=0x^2+x+k=0 có nghiệm chung.

Bài 3.

a)Vẽ các đồ thị của các hàm số y=xy=-x+2 trên cùng một mặt phẳng toạ độ Oxy. Chứng minh rằng khi m thay đổi, điểm M(1,m) luôn cách đều hai đường thẳng trên;

b)Tìm tất cả các bộ ba các số nguyên (x,y,z) thoả mãn x^2+y^2+z^2=x+y+z.

Bài 4.

Cho tam giác nhọn ABC thay đổi nhưng luôn nội tiếp (O;R). Gọi I là tâm đường tròn nội tiếp và H là trực tâm của tam giác ABC.

a)Tính góc BAC để năm điểm B,I,O,H,C cùng thuộc một đường tròn;

b)Cho B,C cố định, tìm vị trí của A trên cung lớn BC để chu vi tam giác ABC lớn nhất.

Bài 5.

Tứ giác ABCD ngoại tiếp (I). Chứng minh rằng nếu nó nội tiếp thì

\dfrac{1}{IA^2}+\dfrac{1}{IC^2}=\dfrac{1}{IB^2}+\dfrac{1}{ID^2}.

Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chuyên, năm học 2005-2006


Thời gian làm bài: 150 phút

Bài 1.

a)Cho a=\dfrac{2-\sqrt{2m}+m}{\sqrt{8}+m\sqrt{m}}b=\dfrac{1+\sqrt{2m}}{\sqrt{2}+\sqrt{m}} với m\geq 0. Hãy tìm một hệ thức liên hệ giữa a,b mà không phụ thuộc m.

b)Cho x,y là các số thực thoả mãn x^3+y^3=1x^7+y^7=x^4+y^4. Chứng minh rằng x+y=1.

Bài 2.

a)Tìm các số nguyên dương n để số p=n^3-n^2+n-1 là số nguyên tố;

b)Giải hệ phương trình \begin{cases}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\ x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9.\end{cases}

Bài 3.

Tìm giá trị nhỏ nhất của biểu thức \dfrac{x^2+x+2}{\sqrt{x(x+1)+1}}(x\in\mathbb{R}).

Bài 4.

Cho hai đường tròn (O;R)(O';R')(với R>R') tiếp xúc ngoài nhau tại CAB là một tiếp tuyến chung ngoài của hai đường tròn(A\in (O),B\in (O')). Tia BC cắt (O) tại điểm thứ hai E, tia AC cắt (O') tại điểm thứ hai K.

a)Chứng minh rằng AE là đường kính của (O);

b)Tính AK^2+BE^2 theo RR';

c)Một đường thẳng (d) đi qua C cắt (O) tại P, cắt (O') tại Q(PQ khác C). Gọi M là trung điểm của PQ. Chứng minh rằng khi (d) quay quanh C, điểm M luôn thuộc một đường tròn cố định.