Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5


Các bạn có thể xem phần 4 tại https://nttuan.org/2018/03/07/chinatst2017-test4/

Ngày thứ nhất
Bài 1. Cho số nguyên \displaystyle n\ge 3. Xét dãy \displaystyle a_1,a_2,...,a_n, nếu \displaystyle (a_i,a_j,a_k) thỏa mãn \displaystyle i+k=2j\, (i<j<k)\displaystyle a_i+a_k\ne 2a_j ta nói nó là tốt. Nếu một dãy chứa ít nhất một bộ ba tốt thì nó chứa ít nhất bao nhiêu bộ ba tốt?
Bài 2. Tìm số nguyên dương \displaystyle m nhỏ nhất có tính chất: với mỗi đa thức \displaystyle f(x) với hệ số thực, tồn tại đa thức \displaystyle g(x) với hệ số thực có bậc không lớn hơn $m$ sao cho tồn tại \displaystyle 2017 số khác nhau \displaystyle a_1,a_2,...,a_{2017} thỏa mãn \displaystyle g(a_i)=f(a_{i+1}) với mọi \displaystyle i=1,2,...,2017. Ở đây chỉ số lấy theo modulo \displaystyle 2017.
Bài 3. Với một điểm hữu tỷ \displaystyle (x,y), nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 2 nhưng không chia hết cho \displaystyle 3 ta tô nó màu đỏ, nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 3 nhưng không chia hết cho \displaystyle 2 ta tô nó màu xanh. Tồn tại hay không một đoạn thẳng chứa đúng \displaystyle 2017 điểm xanh và đúng \displaystyle 58 điểm đỏ? Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4


Các bạn có thể xem phần 3 tại https://nttuan.org/2017/04/14/topic-880/

Ngày thứ nhất
Bài 1. Chứng minh rằng \displaystyle\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}.
Bài 2. Cho tam giác \displaystyle ABC, đường tròn bàng tiếp góc \displaystyle A tiếp xúc với cạnh \displaystyle BC, đường thẳng \displaystyle AB\displaystyle AC lần lượt tại \displaystyle E,D,F. \displaystyle EZ là đường kính của đường tròn. \displaystyle B_1\displaystyle C_1 thuộc \displaystyle DF sao cho \displaystyle BB_1\perp{BC}, \displaystyle CC_1\perp{BC}. Đường thẳng \displaystyle ZB_1,ZC_1 cắt \displaystyle BC tại \displaystyle X,Y tương ứng. \displaystyle EZ cắt \displaystyle DF tại \displaystyle H, \displaystyle ZK vuông góc với \displaystyle FD tại \displaystyle K. Chứng minh rằng nếu \displaystyle H là trực tâm của tam giác \displaystyle XYZ thì \displaystyle H,K,X,Y cùng nằm trên một đường tròn.
Bài 3. Tìm số các bộ \displaystyle (x_1,...,x_{100}) thỏa mãn đồng thời ba điều kiện
i) \displaystyle x_1,...,x_{100}\in\{1,2,..,2017\};
ii) \displaystyle 2017|x_1+...+x_{100};
iii) \displaystyle 2017|x_1^2+...+x_{100}^2. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 3


Các bạn có thể xem phần 2 tại địa chỉ https://nttuan.org/2017/04/09/topic-879/

Ngày thứ nhất

Bài 1. Cho số nguyên n \geq 4. Xét các số thực không âm x_1,\ldots,x_n thỏa mãn x_1 + \cdots + x_n = 1. Tìm giá trị lớn nhất của biểu thức T=x_1x_2x_3 + x_2x_3x_4 + \cdots + x_nx_1x_2.

Bài 2. Cho ABCD là tứ giác lồi không nội tiếp. Gọi hình chiếu vuông góc của A trên BC,BD,CDP,Q,R tương ứng, ở đây P,Q nằm trên cạnh BC,BD còn R nằm ngoài cạnh CD. Gọi hình chiếu vuông góc của D trên AC,BC,ABX,Y,Z tương ứng, ở đây X,Y nằm trên cạnh AC,BC còn Z nằm ngoài cạnh BA. Gọi trực tâm của tam giác ABDH. Chứng minh rằng dây chung của hai đường tròn ngoại tiếp các tam giác PQRXYZ chia đôi BH.

Bài 3. Cho X là tập có 100 phần tử. Tìm số nguyên dương n nhỏ nhất thỏa mãn: Với mỗi dãy n tập con của X, A_1,A_2,\ldots,A_n, tồn tại 1 \leq i < j < k \leq n sao cho A_i \subseteq A_j \subseteq A_k hoặc A_i \supseteq A_j \supseteq A_k.

Ngày thứ hai

Bài 4. Chứng minh rằng tồn tại đa thức P(x) = x^{58} + a_1x^{57} + \cdots + a_{58} sao cho nó có đúng 29 nghiệm thực dương, có đúng 29 nghiệm thực âm và \log_{2017} |a_i| là số nguyên dương với mọi 1 \leq i \leq 58. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 3”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 2


Các bạn có thể xem phần 1 tại địa chỉ https://nttuan.org/2017/04/06/topic-878/

Ngày thứ nhất

Bài 1. Với mỗi số nguyên dương n, gọi D_n là tập tất cả các ước của nf(n) là số nguyên dương nhỏ nhất m sao cho các phần tử của D_n đôi một khác nhau theo modulo m. Chứng minh rằng tồn tại số nguyên dương N sao cho với mọi n \geq N, ta có f(n) \leq n^{0.01}.

Bài 2. 2017 kỹ sư tham gia một hội thảo. Nếu hai kỹ sư nào đó thảo luận với nhau thì họ chỉ dùng tiếng Anh hoặc tiếng Trung và không có hai kỹ sư nào lại thảo luận với nhau hơn một lần. Biết rằng trong mỗi bốn kỹ sư, có một số chẵn cuộc thảo luận giữa hai người trong họ và trong những cuộc thảo luận này các điều kiện sau được thỏa mãn đồng thời:

a) Ít nhất một cuộc thảo luận bằng tiếng Anh;

b) Hoặc không có cuộc thảo luận nào bằng tiếng Anh hoặc số cuộc thảo luận bằng tiếng Anh lớn hơn hoặc bằng số cuộc thảo luận bằng tiếng Trung.

Chứng minh rằng tồn tại 673 kỹ sư sao cho mỗi hai người trong họ đã thảo luận với nhau bằng tiếng Trung.

Bài 3. Cho tứ giác ABCD và đường thẳng l. Biết l cắt các đường thẳng AB, CD, BC, DA, AC, BD lần lượt tại X, X', Y, Y', Z, Z' và sáu điểm này nằm trên l theo thứ tự X, Y, Z, X', Y', Z'. Chứng minh rằng các đường tròn với đường kính XX', YY', ZZ' đồng trục.

Ngày thứ hai

Bài 4. Cho số nguyên n>1. Tìm số nguyên dương m nhỏ nhất thỏa mãn: với mọi tập \{a,b\}\subset \{1,2,\cdots,2n-1\}, tồn tại các số tự nhiên x,y không đồng thời bằng 0 sao cho 2n|ax+byx+y\leq m. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 2”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 1


Ngày thứ nhất

Bài 1. Cho hình bát diện đều T. Từ một điểm bên ngoài T có thể nhìn thấy nhiều nhất bao nhiêu cạnh của T? (Từ điểm P nhìn thấy được cạnh AB nếu giao của T và tam giác không suy biến PAB là đoạn AB).

Bài 2. Cho số thực x>1 và số nguyên dương n. Chứng minh rằng \displaystyle\sum_{k=1}^{n}\frac{\{kx \}}{[kx]}<\sum_{k=1}^{n}\frac{1}{2k-1}.

Bài 3. Cho S=\{1,2,3,...,2017\}. Với mọi tập con A của S, xác định số thực f(A)\geq 0 sao cho:

(1) Với mọi A,B\subset S, f(A\bigcup B)+f(A\bigcap B)\leq f(A)+f(B);

(2) Với mọi A\subset B\subset S, f(A)\leq f(B);

(3) Với mọi k,j\in S, f(\{1,2,...,k+1\})\geq f(\{1,2,...,k\}\bigcup \{j\});

(4) f(\varnothing)=0.

Chứng minh rằng với mọi tập con T có ba phần tử của S, ta có f(T)\leq \dfrac{27}{19}f(\{1,2,3\}).

Ngày thứ hai

Bài 4. Tìm tất cả các cặp số nguyên (m,n) sao cho tồn tại hai đa thức monic P(x)Q(x), với \deg{P}=m, \deg{Q}=nP(Q(t))\not=Q(P(t)),\quad\forall t\in\mathbb{R}. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 1”