Một chứng minh của định lí Fermat nhỏ


Trong bài này chúng tôi sẽ giới thiệu một chứng minh của định lí Fermat nhỏ, chứng minh này của Euler.

Định lí. Cho số nguyên tố p và số nguyên a không chia hết cho p. Khi đó a^{p-1}\equiv 1\pmod{p}.

Chứng minh. Vì có hai trong các số a^1,a^2,\ldots,a^p có cùng số dư khi chia cho p nên tồn tại số nguyên dương k sao cho k<pa^{k}\equiv 1\pmod{p}, chọn k nhỏ nhất có tính chất này. Nếu k=p-1 thì ta có điều cần chứng minh, sau đây ta xét trường hợp k<p-1. Continue reading “Một chứng minh của định lí Fermat nhỏ”