Đáp án các đề thi vào 10, môn Toán, KHTN HN, 1989-2005


Mấy hôm trước tôi có đăng đề thi vào lớp 10, KHTN từ năm 1989 đến 2005. Đây là đáp án của các đề đó.

Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chung, năm học 2005-2006


Thời gian làm bài: 150 phút

Bài 1.

Cho biểu thức P(x)=\dfrac{2\sqrt{x}-3}{x-5\sqrt{x}+6}-\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}-3}.

a)Rút gọn P(x);

b)Giải phương trình P(x)=\dfrac{4}{x-5}.

Bài 2.

Xét phương trình mx^2+(2m-1)x+m-2=0.

a)Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2-x_1x_2=4;

b)Chứng minh rằng nếu m là tích của hai số tự nhiên liên tiếp thì phương trình có nghiệm hữu tỷ.

Bài 3.

Hai xe máy đi từ A đến B. Xe thứ nhất khởi hành trước xe thứ hai nửa giờ với vận tốc nhỏ hơn vận tốc xe thứ hai 5km một giờ. Biết rằng hai xe đến B cùng một lúc và quãng đường AB dài 140km. Tính vận tốc mỗi xe.

Bài 4.

Cho nửa đường tròn tâm O đường kính AB=2R, lấy điểm C trên đoạn AO sao cho C khác A,O. Kẻ hai tia AxBy vuông góc với AB và ở cùng một phía với nửa đường tròn. Điểm M di động trên nửa đường tròn nhưng khác AB. Một đường thẳng vuông góc với CM tại M cắt AxP, cắt ByQ; AM cắt CPEBM cắt CQF.

a)Chứng minh bốn điểm M,E,C,F nằm trên một đường tròn;

b)Chứng minh EF||AB;

c)Khi C là trung điểm của AO, tìm vị trí của M trên nửa đường tròn để APQB có diện tích nhỏ nhất. Tính giá trị này.

Đề thi tuyển sinh vào lớp 10 tỉnh Quảng Ninh, môn Toán, năm học 2008-2009


Thời gian làm bài: 120 phút

Bài 1.

Rút gọn các biểu thức

a)A=1+2\sqrt{2}-3\sqrt{8}+\sqrt{32};

b)B=(\sqrt{x}+1)\cdot (\sqrt{x}-1)+1 với x\geq 0.

Bài 2.

Cho phương trình x^2+2mx-m^2=0.

a)Giải phương trình với m=1;

b)Tìm các giá trị của m để phương trình có hai nghiệm phân biệt.

Bài 3.

Giải bài toán bằng cách lập phương trình hay hệ phương trình

Năm trước. hai đơn vị sản xuất nông nghiệp thu hoạch được 750 tấn thóc. Năm sau đơn vị thứ nhất làm vượt mức 14/100 và đơn vị thứ hai làm vượt mức 10/100 so với năm trước nên cả hai đơn vị thu hoạch được 845 tấn thóc. Hỏi năm trước mỗi đơn vị thu hoạch được bao nhiêu tấn thóc?

Bài 4.

Cho (O;R) và một dây AB cố định (AB<2R). Trên cung lớn AB lấy hai điểm C,D sao cho AD||BC.

a)Kẻ các tiếp tuyến với đường tròn (O;R) tại A,D, chúng cắt nhau tại I. Chứng minh rằng AODI là tứ giác nội tiếp;

b)Gọi M là giao điểm của ACBD. Chứng minh rằng điểm M thuộc một đường tròn cố định khi C,D di chuyển trên cung lớn AB sao cho AD||BC;

c)Cho biết AB=R\sqrt{2}BC=R. Tính diện tích tứ giác ABCD theo R.

Bài 5.

Giả sử phương trình x^2-mx-1=0 có hai nghiệm là x_1,x_2. Không giải phương trình hãy tính x_1-x_2.

Đề thi tuyển sinh vào lớp 10 tỉnh Quảng Ninh, môn Toán, năm học 2007-2008


Thời gian làm bài: 120 phút

Bài 1.

Rút gọn các biểu thức

a)A=\dfrac{1}{\sqrt{5}+2}+\dfrac{1}{\sqrt{5}-2};

b)B=\sqrt{(\sqrt{3}-\sqrt{7})^2}.

Bài 2.

Cho phương trình x^2-6x+m+1=0.

a)Tìm m để phương trình có nghiệm x=2;

b)Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2=26.

Bài 3.

Giải bài toán bằng cách lập phương trình hay hệ phương trình

Một thửa ruộng hình chữ nhật có chu vi 300m. Tính diện tích của thửa ruộng biết rằng nếu chiều dài giảm đi 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng vẫn không thay đổi.

Bài 4.

Cho đường tròn (O;R) và đường thẳng (d) cố định không giao nhau. Từ điểm M thuộc (d) kẻ hai tiếp tuyến MA,MB với đường tròn.

a)Chứng minh rằng tâm đường tròn nội tiếp tam giác MAB thuộc (O;R);

b)Biết MA=R\sqrt{3}, tính diện tích hình phẳng giới hạn bởi hai tiếp tuyến MA,MB và cung nhỏ AB;

c)Chứng minh rằng khi M di động trên (d) thì AB luôn đi qua một điểm cố định.

Bài 5.

Chứng minh rằng số \sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}} là bình phương của một số nguyên.