Đáp án các đề thi vào 10, môn Toán, KHTN HN, 1989-2005


Mấy hôm trước tôi có đăng đề thi vào lớp 10, KHTN từ năm 1989 đến 2005. Đây là đáp án của các đề đó.

Đề thi tuyển sinh vào lớp 10 tỉnh Quảng Ninh, môn Toán, năm học 2008-2009


Thời gian làm bài: 120 phút

Bài 1.

Rút gọn các biểu thức

a)A=1+2\sqrt{2}-3\sqrt{8}+\sqrt{32};

b)B=(\sqrt{x}+1)\cdot (\sqrt{x}-1)+1 với x\geq 0.

Bài 2.

Cho phương trình x^2+2mx-m^2=0.

a)Giải phương trình với m=1;

b)Tìm các giá trị của m để phương trình có hai nghiệm phân biệt.

Bài 3.

Giải bài toán bằng cách lập phương trình hay hệ phương trình

Năm trước. hai đơn vị sản xuất nông nghiệp thu hoạch được 750 tấn thóc. Năm sau đơn vị thứ nhất làm vượt mức 14/100 và đơn vị thứ hai làm vượt mức 10/100 so với năm trước nên cả hai đơn vị thu hoạch được 845 tấn thóc. Hỏi năm trước mỗi đơn vị thu hoạch được bao nhiêu tấn thóc?

Bài 4.

Cho (O;R) và một dây AB cố định (AB<2R). Trên cung lớn AB lấy hai điểm C,D sao cho AD||BC.

a)Kẻ các tiếp tuyến với đường tròn (O;R) tại A,D, chúng cắt nhau tại I. Chứng minh rằng AODI là tứ giác nội tiếp;

b)Gọi M là giao điểm của ACBD. Chứng minh rằng điểm M thuộc một đường tròn cố định khi C,D di chuyển trên cung lớn AB sao cho AD||BC;

c)Cho biết AB=R\sqrt{2}BC=R. Tính diện tích tứ giác ABCD theo R.

Bài 5.

Giả sử phương trình x^2-mx-1=0 có hai nghiệm là x_1,x_2. Không giải phương trình hãy tính x_1-x_2.

Đề thi tuyển sinh vào lớp 10 tỉnh Quảng Ninh, môn Toán, năm học 2007-2008


Thời gian làm bài: 120 phút

Bài 1.

Rút gọn các biểu thức

a)A=\dfrac{1}{\sqrt{5}+2}+\dfrac{1}{\sqrt{5}-2};

b)B=\sqrt{(\sqrt{3}-\sqrt{7})^2}.

Bài 2.

Cho phương trình x^2-6x+m+1=0.

a)Tìm m để phương trình có nghiệm x=2;

b)Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2=26.

Bài 3.

Giải bài toán bằng cách lập phương trình hay hệ phương trình

Một thửa ruộng hình chữ nhật có chu vi 300m. Tính diện tích của thửa ruộng biết rằng nếu chiều dài giảm đi 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng vẫn không thay đổi.

Bài 4.

Cho đường tròn (O;R) và đường thẳng (d) cố định không giao nhau. Từ điểm M thuộc (d) kẻ hai tiếp tuyến MA,MB với đường tròn.

a)Chứng minh rằng tâm đường tròn nội tiếp tam giác MAB thuộc (O;R);

b)Biết MA=R\sqrt{3}, tính diện tích hình phẳng giới hạn bởi hai tiếp tuyến MA,MB và cung nhỏ AB;

c)Chứng minh rằng khi M di động trên (d) thì AB luôn đi qua một điểm cố định.

Bài 5.

Chứng minh rằng số \sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}} là bình phương của một số nguyên.

Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chung, năm học 2006-2007


Thời gian làm bài: 150 phút

Bài 1.

a)Tính giá trị của biểu thức A=\dfrac{5-\sqrt{5}}{\sqrt{5}-1}:\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right);

b)Chứng minh rằng với x>0x\not = 1, giá trị của biểu thức sau không phụ thuộc biến \dfrac{(1-x)(\sqrt{x}+1)}{\sqrt{x}}\cdot\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).

Bài 2.

a)Giải phương trình x(x+1)(x+2)(x+3)=3;

b)Giải hệ phương trình

\begin{cases}x+y=2(x-2)(y+1)+1\\ -3x+2y=(x-2)(y+1)-8.\end{cases}

Bài 3.

a)Chứng minh rằng ba đường thẳng sau không đồng quy

y=3x+7(d_1);y=-2x-3(d_2);y=2x-7(d_3);

b)Chứng minh rằng khi m thay đổi các đường thẳng (m+1)x-y-m-3=0 luôn đi qua một điểm cố định. Tìm điểm này.

Bài 4.

Cho đường tròn (O,R) và đường thẳng d không cắt đường tròn. Lấy điểm M trên d, kẻ hai tiếp tuyến MAMB tới đường tròn, OM cắt AB tại H.

a)Chứng minh rằng OH\cdot OM=R^2;

b)Gọi góc AMB bằng \alpha, tính bán kính đường tròn nội tiếp tam giác AMB theo R\alpha;

c)Chứng minh rằng khi M chạy trên d thì H chạy trên một đường tròn cố định.

Bài 5.

Chứng minh rằng với mỗi m ít nhất một trong hai phương trình sau vô nghiệm

x^2+(m-1)x+2m^2=0x^2+4mx-m+2=0.

Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chung, năm học 2005-2006


Thời gian làm bài: 150 phút

Bài 1.

Cho biểu thức P(x)=\dfrac{2\sqrt{x}-3}{x-5\sqrt{x}+6}-\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}-3}.

a)Rút gọn P(x);

b)Giải phương trình P(x)=\dfrac{4}{x-5}.

Bài 2.

Xét phương trình mx^2+(2m-1)x+m-2=0.

a)Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2-x_1x_2=4;

b)Chứng minh rằng nếu m là tích của hai số tự nhiên liên tiếp thì phương trình có nghiệm hữu tỷ.

Bài 3.

Hai xe máy đi từ A đến B. Xe thứ nhất khởi hành trước xe thứ hai nửa giờ với vận tốc nhỏ hơn vận tốc xe thứ hai 5km một giờ. Biết rằng hai xe đến B cùng một lúc và quãng đường AB dài 140km. Tính vận tốc mỗi xe.

Bài 4.

Cho nửa đường tròn tâm O đường kính AB=2R, lấy điểm C trên đoạn AO sao cho C khác A,O. Kẻ hai tia AxBy vuông góc với AB và ở cùng một phía với nửa đường tròn. Điểm M di động trên nửa đường tròn nhưng khác AB. Một đường thẳng vuông góc với CM tại M cắt AxP, cắt ByQ; AM cắt CPEBM cắt CQF.

a)Chứng minh bốn điểm M,E,C,F nằm trên một đường tròn;

b)Chứng minh EF||AB;

c)Khi C là trung điểm của AO, tìm vị trí của M trên nửa đường tròn để APQB có diện tích nhỏ nhất. Tính giá trị này.

Phương trình bậc hai và một số vấn đề liên quan


Rõ ràng là trong chương trình Toán THCS phương trình bậc hai là một phần kiến thức trọng tâm, vì thế mà nó xuất hiện hầu khắp trong các đề thi tuyển sinh vào lớp 10. Trong chuyên đề này tôi sẽ trình bày các kiến thức cơ bản về phương trình bậc hai(điều kiện có nghiệm, định lý Viét và các áp dụng) và một số bài toán liên quan(hệ bậc hai,…).

Phương trình bậc hai một ẩn số là một phương trình có dạng

ax^2+bx+c=0, với a,bc là các số thực thoả mãn a\not =0.

\clubsuit Cho ví dụ về các phương trình bậc hai đủ, thiếu.

\boxed{1}. Số nghiệm của phương trình bậc hai

\clubsuit Đặt \Delta=b^2-4ac. Một phương trình bậc hai có ít nhất một nghiệm khi và chỉ khi \Delta\geq 0, có đúng hai nghiệm khi và chỉ khi \Delta>0 và có 0 nghiệm khi và chỉ khi \Delta<0. Khi làm các bài toán dạng này các bạn nhớ phải quan tâm đến hệ số của x^2 sau đó mới tính \Delta trong trường hợp hệ số này khác 0.

Bài 1.1. Chứng minh rằng với mỗi ba số thực đôi một khác nhau a,b,c phương trình

\dfrac{1}{x-a}+\dfrac{1}{x-b}+\dfrac{1}{x-c}=0 có hai nghiệm phân biệt.

Bài 1.2. Chứng minh rằng phương trình

c^2x^2+(a^2-b^2-c^2)x+b^2=0 vô nghiệm với a,bc là độ dài ba cạnh của một tam giác.

Bài 1.3. Chứng minh rằng với mỗi a,b,c\in\mathbb{R} một trong ba phương trình sau phải có nghiệm ax^2+2bx+c=0,bx^2+2cx+a=0cx^2+2ax+b=0.

Bài 1.4. Cho a,b là các số thực không đồng thời bằng 0. Chứng minh rằng phương trình \dfrac{a^2}{x}+\dfrac{b^2}{x-1}=1 có nghiệm.

Bài 1.5. Cho a,b,c là các số thực thoả mãn 5a+4b+6c=0. Chứng minh rằng phương trình ax^2+bx+c=0 có nghiệm.

Bài 1.6. Cho a,b,c là các số thực thoả mãn a(a+2b+4c)<0. Chứng minh rằng phương trình ax^2+bx+c=0 có nghiệm.

Bài 1.7. Cho a,b,c là các số thực thoả mãn a+b+c=6. Chứng minh rằng ít nhất một trong ba phương trình sau có nghiệm x^2+ax+1=0,x^2+bx+1=0x^2+cx+1=0.

Bài 1.8. Cho a,b,c là ba số dương đôi một khác nhau có tổng bằng 12. Chứng minh rằng trong ba phương trình sau có một phương trình có nghiệm, một phương trình vô nghiệm x^2+ax+b=0,x^2+bx+c=0x^2+cx+a=0.

Bài 1.9. Chứng minh rằng nếu a,b là các số thực thoả mãn |a|+|b|>2 thì phương trình sau có nghiệm 2ax^2+bx+1-a=0.

Bài 1.10. Chứng minh rằng với mỗi a,b,c\in\mathbb{R} phương trình sau luôn có nghiệm a(x-b)(x-c)+b(x-c)(x-a)+c(x-a)(x-b)=0.

Bài 1.11. Chứng minh rằng nếu các phương trình bậc hai x^2+ax+b=0x^2+cx+d=0 có các hệ số thoả mãn ac\geq 2(b+d) thì ít nhất một trong hai phương trình đó có nghiệm.

\boxed{2}. Giải phương trình bậc hai có tham số

\clubsuit Đừng có tính \Delta của một phương trình chưa hẳn là bậc hai! Hệ số của x^2 có thể bằng 0.

Bài 2.1. Giải và biện luận phương trình (m-1)x^2+m^2-3m+2=0.

Bài 2.2. Giải và biện luận phương trình (m-3)x^2-2mx+m-6=0.

Bài 2.3. Giải và biện luận phương trình \dfrac{m-1}{mx-1}+\dfrac{2}{x^2-1}=\dfrac{m+5}{(1-mx)(x^2-1)}.

\clubsuit Phải xét m=0 trước thì mới đặt điều kiện được và giải xong nhớ kiểm tra điều kiện.

\boxed{3}. Một số phương trình quy về bậc hai

Trong mục này ta sẽ xét các phương trình được giải sau khi chuyển về phương trình bậc hai nhờ một phép đặt ẩn phụ.

\clubsuit Bạn cần phải nhớ cách giải các phương trình có dạng đặc biệt sau đây

a)Phương trình trùng phương ax^4+bx^2+c=0(a\not=0).

b)Phương trình đối xứng gương ax^4+bx^3+cx^2+bx+a=0(a\not=0).

c)Phương trình dạng (x+a)^4+(x+b)^4=c.

d)Phương trình dạng (x+a)(x+b)(x+c)(x+d)=e với a+c=b+d.

e)Phương trình dạng \dfrac{mx}{ax^2+bx+d}+\dfrac{nx}{ax^2+cx+d}=p(p\not=0).

Đương nhiên là còn có các dạng phương trình khác nhưng cách giải của chúng cũng gần như một trong năm dạng trên.

Bài 3.1. Giải các phương trình

a)2x^4+3x^3-16x^2+3x+2=0.

b)(x+3)^4+(x+5)^4=16.

c)(x+1)(x+2)(x+3)(x+4)=24.

d)x^4-17x^2+16=0.

e)\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1.

Bài 3.2. Giải các phương trình

a)(x+4)(x+6)(x-2)(x-12)=25x^2.

b)\dfrac{x^2-10x+15}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}.

c)\dfrac{x^2-3x+5}{x^2-4x+5}-\dfrac{x^2-5x+5}{x^2-6x+5}=-\dfrac{1}{4}.

Bài 3.3. Giải các phương trình

a)20\left(\dfrac{x+3}{x-2}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x^2-4}{x^2-1}\right)=0.

b)\left(\dfrac{x+2}{x+1}\right)^2+\left(\dfrac{x-2}{x-1}\right)^2-\dfrac{5}{2}\left(\dfrac{x^2-4}{x^2-1}\right)=0.

Bài 3.4. Giải các phương trình

a)(x+5)(2x+12)(2x+20)(x+12)=3x^2.

b)(4x+1)(12x-1)(3x+2)(x+1)=4.

Bài 3.5. Cho phương trình x^4+2(m-2)x^2+m^2-5m+5=0. Tìm m để phương trình có

a)4 nghiệm phân biệt.

b)3 nghiệm phân biệt.

c)2 nghiệm phân biệt.

d)1 nghiệm.

e)0 nghiệm.

Bài 3.6. Giải các phương trình

a)x\left(\dfrac{3-x}{x+1}\right)\left(x+\dfrac{3-x}{x+1}\right)=2.

b)x\left(\dfrac{8-x}{x-1}\right)\left(x-\dfrac{8-x}{x-1}\right)=15.

c)x^2+\left(\dfrac{x}{x+1}\right)^2=1.

Bài 3.7. Giải các phương trình

a)\dfrac{1}{x}+\dfrac{1}{x+2}+\dfrac{1}{x+5}+\dfrac{1}{x+7}=\dfrac{1}{x+1}+\dfrac{1}{x+3}+\dfrac{1}{x+4}+\dfrac{1}{x+6};

b)\dfrac{(1995-x)^2+(1995-x)(x-1996)+(x-1996)^2}{(1995-x)^2+(1995-x)(x-1996)+(x-1996)^2}=\dfrac{19}{49}.

\boxed{4}. Định lý Viét và các áp dụng

\clubsuit Định lý Viét. Nếu phương trình bậc hai nói trên có các nghiệm là x_1x_2 thì ta có x_1+x_2=-\dfrac{b}{a}x_1x_2=\dfrac{c}{a}.

\boxed{4.1}. Nhẩm nghiệm

\clubsuit Nếu a+b+c=0 thì phương trình có các nghiệm x_1=1,x_2=\dfrac{c}{a}. Nếu a-b+c=0 thì phương trình có các nghiệm x_1=-1,x_2=-\dfrac{c}{a}.

Continue reading “Phương trình bậc hai và một số vấn đề liên quan”