IMO 2018 training (1)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2018. Tuyển tập này gồm nhiều phần, đây là phần thứ nhất.

Bài 1. Cho \displaystyle a_1, a_2, \dots, a_{2^{2018}} là các số nguyên dương không lớn hơn \displaystyle 2018 sao cho với mỗi \displaystyle n \leq 2^{2018}, \displaystyle a_1a_2 \dots a_{n} +1 là số chính phương. Chứng minh rằng tồn tại \displaystyle i sao cho \displaystyle a_i=1.
Bài 2. Cho \displaystyle (a_n)_{n\geq 1} là một dãy các số nguyên dương thỏa mãn
\displaystyle a_{n+1}=[\sqrt{a_n}]+[\sqrt[3]{a_n}]+\cdots+[\sqrt[n+1]{a_n}],\quad \forall n\in\mathbb{N}^*. Chứng minh rằng với mỗi số nguyên tố \displaystyle p, có vô hạn các số hạng của dãy chia hết cho \displaystyle p.
Bài 3. Cho số nguyên \displaystyle k>1. Dãy số \displaystyle a_1,a_2, \cdots xác định bởi \displaystyle a_1=1, a_2=k\displaystyle a_{n+1}-(k+1)a_n+a_{n-1}=0,\,\forall n>1. Tìm tất cả các số nguyên dương \displaystyle n sao cho \displaystyle a_n là một lũy thừa của \displaystyle k.
Bài 4. Hai dãy số \displaystyle \{u_{n}\}, \displaystyle \{v_{n}\} xác định bởi \displaystyle u_{0} =u_{1} =1 ,\displaystyle u_{n}=2u_{n-1}-3u_{n-2} \displaystyle (n\geq 2), \displaystyle v_{0} =a, v_{1} =b , v_{2}=c ,\displaystyle v_{n}=v_{n-1}-3v_{n-2}+27v_{n-3} \displaystyle (n\geq 3). Giả sử có số nguyên dương \displaystyle N sao cho với mỗi \displaystyle n> N ta có \displaystyle u_{n}|v_{n}. Chứng minh rằng \displaystyle 3a=2b+c.
Bài 5. Với mỗi số thực \displaystyle x, gọi \displaystyle M(x) là tập tất cả các số nguyên dương \displaystyle q thỏa mãn: tồn tại số nguyên \displaystyle p sao cho \displaystyle \left|x - \dfrac{p}{q}\right|<\dfrac{1}{10q}. Chứng minh nếu hai số vô tỷ \displaystyle \alpha\displaystyle \beta thỏa mãn \displaystyle M(\alpha)=M(\beta) thì \displaystyle \alpha+\beta hoặc \displaystyle \alpha- \beta là một số nguyên.
Bài 6. Cho \displaystyle M là một tập con của \displaystyle \mathbb{R} thỏa mãn đồng thời các điều kiện:
a) Với mọi \displaystyle x \in M, n \in \mathbb{Z}, ta có \displaystyle x+n \in M.
b) Với mọi \displaystyle x \in M, ta có \displaystyle -x \in M.
c) \displaystyle M\displaystyle \mathbb{R}\setminus M chứa một đoạn có độ dài lớn hơn \displaystyle 0.
Với mỗi \displaystyle x, đặt \displaystyle M(x) = \{ n \in \mathbb{Z}^{+} | nx \in M \}. Chứng minh rằng nếu \displaystyle \alpha,\beta là các số vô tỷ thỏa mãn \displaystyle M(\alpha) = M(\beta) thì \displaystyle \alpha + \beta hoặc \displaystyle \alpha - \beta là số hữu tỷ. Continue reading “IMO 2018 training (1)”

Đề chọn đội VMO 2018


Giống như topic năm 2016 https://nttuan.org/2016/09/18/topic-817/ , trong topic này tôi sẽ tổng hợp tất cả các đề chọn đội VMO 2018 của các tỉnh thành *.pdf. Mọi người có thể hỗ trợ tôi theo các cách:

1) Chỉ ra lỗi trong file;

2) Gửi đề của tỉnh mình qua email cho tôi (có file text càng tốt).

Cảm ơn các bạn rất nhiều. Continue reading “Đề chọn đội VMO 2018”

IMO 2017 training (1)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2017. Tuyển tập này gồm nhiều phần, đây là phần thứ nhất.

Bài 1. Cho n-giác đều P. Chứng minh rằng nếu 3 trong các đỉnh của P là điểm nguyên và hai trong chúng là kề nhau thì P là hình vuông.
Bài 2. (Vietnam TST 2011) Có một con cào cào đậu ở điểm (1,1) trên mặt phẳng tọa độ Oxy. Từ điểm đó nó sẽ nhảy đến điểm nguyên khác theo quy tắc: nhảy được từ A đến B khi và chỉ khi diện tích của tam giác AOB bằng 1/2.
(a) Tìm tất cả các điểm nguyên dương (m,n) sao cho con cào cào có thể đến đó sau hữu hạn lần nhảy, bắt đầu từ (1,1).
(b) Nếu (m,n) thỏa mãn điều kiện trên. Chứng minh rằng con cào cào có thể đến (m,n) từ (1,1) sau nhiều nhất |m-n| lần nhảy.
Bài 3. Cho số nguyên n \ge 5. Xét các số nguyên a_i,b_i (i = 1,2, \cdots ,n) thỏa mãn đồng thời hai điều kiện:
(a) Các cặp (a_i,b_i) với i = 1,2,\cdots,n đôi một khác nhau;
(b) |a_1b_2-a_2b_1| = |a_2b_3-a_3b_2| = \cdots = |a_nb_1-a_1b_n| = 1.
Chứng minh rằng tồn tại các chỉ số i,j sao cho 1<|i-j|<n-1|a_ib_j-a_jb_i|=1.
Bài 4. Trong mặt phẳng tọa độ, tô màu các điểm nguyên với hoành độ và tung độ chẵn bởi màu đen và các điểm nguyên còn lại bởi màu trắng. Cho P là một đa giác lồi có các đỉnh là các điểm nguyên màu đen. Chứng minh rằng mỗi điểm nguyên trắng nằm bên trong hoặc trên biên của P sẽ nằm giữa hai điểm nguyên đen nằm trong hay trên biên của P. Continue reading “IMO 2017 training (1)”

Đề thi Olympic Toán sinh viên học sinh năm 2017-Bảng PT


Nguồn: http://www.vms.org.vn/index.php?lang=en (Hội Toán học Việt Nam).

Continue reading “Đề thi Olympic Toán sinh viên học sinh năm 2017-Bảng PT”

Danh sách đội Việt Nam tham dự IMO 2017


Theo fb của thầy Nguyễn Khắc Minh.

1. Lê Quang Dũng, THPT chuyên Lam Sơn, Thanh Hoá.
2. Phạm Nam Khánh, THPT chuyên Hà Nội – Amsterđam, Tp. Hà Nội.
3. Nguyễn Cảnh Hoàng, THPT chuyên Phan Bội Châu, Nghệ An.
4. Phan Nhật Duy, THPT chuyên Hà Tĩnh, Hà Tĩnh.
5. Hoàng Hữu Quốc Huy, THPT chuyên Lê Quý Đôn, Bà Rịa – Vũng Tàu.
6. Đỗ Văn Quyết, THPT chuyên Vĩnh Phúc, Vĩnh Phúc.

(Danh sách trên được liệt kê theo thứ tự điểm từ cao xuống thấp)


Các bạn có thể xem đề chọn đội IMO 2017 ở link https://nttuan.org/2017/03/27/topic-874/

Vietnam TST 2017


Ngày thứ nhất

Bài 1. Cho 44 cái lỗ trên một cái rãnh là một đường thẳng và 2017 con kiến. Mỗi con kiến sẽ chui lên 1 cái lỗ và đi đến một cái lỗ khác với vận tốc không đổi rồi chui xuống đó. Gọi T là tập các thời điểm mà con kiến chui lên hoặc chui xuống. Biết rằng vận tốc của các con kiến đôi một khác nhau và |T| \le 45. Chứng minh rằng tồn tại ít nhất hai con kiến không gặp nhau.

Bài 2. Với mỗi số nguyên dương n, đặt x_n = C_{2n}^n.

a) Chứng minh rằng nếu \dfrac{2017^k}{2} < n < 2017^k với k là số nguyên dương nào đó thì x_n là bội của 2017. b) Tìm tất cả số nguyên dương h > 1 để tồn tại các số nguyên dương N,T sao cho với mọi n>N thì x_n là dãy số tuần hoàn theo modulo h với chu kỳ T.

Bài 3. Cho tam giác ABC ngoại tiếp đường tròn (I)(I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi I_b, I_c lần lượt là các tâm đường tròn bàng tiếp góc B, C của tam giác ABC. Gọi P, Q lần lượt là trung điểm I_bE, I_cF. Giả sử (PAC) cắt AB tại R(QAB) cắt AC tại S.

a) Chứng minh rằng PR, QS, AI đồng quy.

b) DE, DF lần lượt cắt I_bI_c tại K, J. EJ cắt FK tại MPE, QF cắt (PAC),(QAB) lần lượt tại X,Y. Chứng minh rằng BY, CX, AM đồng quy.

Continue reading “Vietnam TST 2017”