USA TSTST 2017


Ngày thứ nhất
Bài 1. Cho tam giác \displaystyle ABC nội tiếp đường tròn \displaystyle \Gamma có tâm \displaystyle O, và trực tâm \displaystyle H. Giả sử \displaystyle AB\neq AC\displaystyle \angle A \neq 90^{\circ}. Gọi \displaystyle M\displaystyle N lần lượt là trung điểm của \displaystyle AB\displaystyle AC, và \displaystyle E\displaystyle F lần lượt là chân các đường cao hạ từ \displaystyle B\displaystyle C của tam giác \displaystyle ABC. Gọi \displaystyle P là giao điểm của \displaystyle MN với tiếp tuyến của \displaystyle \Gamma tại \displaystyle A. Gọi \displaystyle Q là giao điểm thứ hai của \displaystyle \Gamma với \displaystyle (AEF). Gọi \displaystyle R là giao điểm của \displaystyle AQ\displaystyle EF. Chứng minh rằng \displaystyle PR\perp OH.
Bài 2. Ana và Banana đang chơi một trò như sau: Đầu tiên Ana chọn một từ, là dãy khác rỗng các chữ cái trong bảng chữ cái tiếng Anh. Sau đó Banana chọn một số tự nhiên \displaystyle k và đố Ana đưa ra một từ có đúng \displaystyle k dãy con bằng với từ của Ana. Ana thắng nếu có thể đưa ra một từ như thế, nếu không, cô ấy sẽ thua. Từ nào mà khi Ana chọn cô ấy sẽ luôn thắng với mọi cách chọn \displaystyle k của Banana?
Bài 3. Xét phương trình \displaystyle x^2-cx+1 = \dfrac{f(x)}{g(x)}, ở đây \displaystyle f\displaystyle g là các đa thức với hệ số thực không âm. Với \displaystyle c>0, xác định giá trị nhỏ nhất của \displaystyle \deg f hoặc chứng tỏ \displaystyle f,g không tồn tại.

Continue reading “USA TSTST 2017”

USA JMO 2017


Ngày thứ nhất

Bài 1. Chứng minh rằng có vô hạn cặp số nguyên (a, b) sao cho a>1, b>1, (a,b)=1a^b+b^a chia hết cho a+b.

Bài 2. Xét phương trình (3x^3+xy^2)(x^2y+3y^3)=(x-y)^7.

(a) Chứng minh rằng phương trình có vô hạn nghiệm nguyên dương;

(b) Tìm tất cả nghiệm nguyên dương của phương trình.

Bài 3. Cho tam giác đều ABC và điểm P nằm trên đường tròn ngoại tiếp của nó. Gọi D là giao điểm của PABC, E là giao điểm của PBAC, F là giao điểm của PCAB. Chứng minh rằng diện tích của tam giác DEF gấp đôi diện tích của tam giác ABC.

Ngày thứ hai

Bài 4. Tồn tại hay không bộ ba các số nguyên dương (a,b,c) sao cho (a-2)(b-2)(c-2)+12 là một số nguyên tố và nó là ước thực sự của số nguyên dương a^2+b^2+c^2+abc-2017?

Bài 5. Cho OH lần lượt là tâm đường tròn ngoại tiếp và trực tâm của tam giác nhọn ABC. Các điểm MD nằm trên cạnh BC sao cho BM=CM\angle BAD = \angle CAD. Tia MO cắt đường tròn ngoại tiếp tam giác BHC tại N. Chứng minh rằng \angle ADO = \angle HAN. Continue reading “USA JMO 2017”

Đề thi chọn HSG Quốc gia của Mỹ năm 2017 (USA MO 2017)


Ngày thứ nhất

Bài 1. Chứng minh rằng có vô hạn cặp số nguyên (a, b) sao cho a>1, b>1, (a,b)=1a^b+b^a chia hết cho a+b.

Bài 2. Cho m_1, m_2, \ldots, m_nn số nguyên dương. Với mỗi dãy số nguyên A = (a_1, \ldots, a_n) và mỗi hoán vị w = w_1, \ldots, w_n của m_1, \ldots, m_n, định nghĩa A-nghịch đảo của w là một cặp w_i, w_j với i < j sao cho một trong các điều kiện sau thỏa mãn:

1) a_i \ge w_i > w_j

2) w_j > a_i \ge w_i,

3) w_i > w_j > a_i.

Chứng minh rằng với mỗi hai dãy A = (a_1, \ldots, a_n), B = (b_1, \ldots, b_n), và với mỗi số nguyên dương k, số hoán vị của m_1, \ldots, m_n có đúng k A-nghịch đảo bằng số hoán vị của m_1, \ldots, m_n có đúng k B-nghịch đảo.

Bài 3. Cho tam giác ABC với đường tròn ngoại tiếp \Omega và tâm đường tròn nội tiếp I. Tia AI cắt BC tại D\Omega tại điểm thứ hai M; đường tròn đường kính DM cắt \Omega tại điểm thứ hai K. Các đường thẳng MKBC cắt nhau tại S, và N là trung điểm của IS. Các đường tròn ngoại tiếp tam giác KIDMAN cắt nhau tại L_1,L_2. Chứng minh rằng \Omega chia đôi IL_1 hoặc IL_2.

Ngày thứ hai

Bài 4. Cho P_1, P_2, \dots, P_{2n}2n điểm phân biệt trên đường tròn x^2+y^2=1, khác (1,0). Mỗi điểm được tô xanh hoặc đỏ, sao cho có đúng n điểm đỏ và n điểm xanh. Gọi R_1, R_2, \dots, R_n là một cách đánh số các điểm đỏ. Gọi B_1 là điểm xanh gần R_1 nhất khi đi theo chiều kim đồng hồ quanh đường tròn từ R_1. B_2 là điểm xanh gần R_2 nhất trong các điểm xanh còn lại khi đi theo chiều kim đồng hồ quanh đường tròn từ R_2, và cứ thế. Chứng minh rằng số cung cùng chiều kim đồng hồ có dạng R_i \to B_i chứa (1,0) không phụ thuộc vào cách đánh số  các điểm đỏ. Continue reading “Đề thi chọn HSG Quốc gia của Mỹ năm 2017 (USA MO 2017)”

USA TST 2017 (2)


Các bạn có thể xem phần đầu ở https://nttuan.org/2017/02/05/topic-859/

Bài 4. Bạn đang gian lận ở một cuộc thi đố. Với mỗi câu hỏi, bạn có thể nhìn trộm câu trả lời của n>1 người khác trước khi viết ra câu trả lời của bạn. Với mỗi câu hỏi, sau khi tất cả các câu trả lời được viết, người dẫn chương trình công bố câu trả lời đúng. Một câu trả lời đúng được 0 điểm, sai được -2 điểm, nhưng chỉ có -1 điểm cho bạn, vì bạn đã hack hệ thống tính điểm. Sau khi công bố câu trả lời đúng, người dẫn chương trình đọc câu hỏi tiếp theo. Chứng minh rằng nếu bạn đang dẫn đầu bởi 2^{n-1} điểm tại bất cứ lúc nào, thì bạn chắc chắn giành vị trí đầu tiên.

Bài 5. Cho tam giác ABC với đường cao AE. Đường tròn bàng tiếp góc A tiếp xúc với BC tại D, và cắt đường tròn ngoại tiếp tại FG. Chứng minh rằng có thể chọn các điểm VN trên các đường thẳng DGDF tương ứng sao cho EVAN là hình thoi.

Bài 6. Chứng minh rằng có vô hạn các bộ ba (a, b, p) các số nguyên dương sao cho p là số nguyên tố, a < p, b < p, và (a + b)^p - a^p - b^p chia hết cho p^3.

USA TST 2017 (1)


Đề thi chọn đội tuyển Mĩ tham dự IMO 2017

Bài 1. Trong một giải đấu thể thao, mỗi đội sử dụng một bộ nhiều nhất t màu nhận dạng. Một tập hợp S của các đội được gọi là nhận dạng được nếu ta có thể gán cho mỗi đội trong S một màu trong bộ màu của họ sao cho, không có đội nào trong S mang cùng màu với một đội khác trong S. Với tất cả các số nguyên dương nt, xác định số nguyên lớn nhất g (n, t) sao cho: Trong bất kỳ giải đấu thể thao với đúng n màu nhận dạng các đội tuyển, ta có thể tìm được một tập nhận dạng được với ít nhất g(n, t) thành viên.

Bài 2. Cho tam giác nhọn ABC với tâm đường tròn ngoại tiếp O, và điểm T trên đường thẳng BC sao cho \angle TAO=90^{\circ}. Đường tròn đường kính AT cắt đường tròn ngoại tiếp của \Delta BOC tại hai điểm A_1A_2, trong đó OA_1 <OA_2. Các điểm B_1 , B_2 , C_1 , C_2 được định nghĩa tương tự. Continue reading “USA TST 2017 (1)”

VMO training 2017 – Part 5


Các bạn có thể xem phần trước ở https://nttuan.org/2017/01/06/topic-852/


Trong bài viết này tôi sẽ giới thiệu một số lời giải của bài toán sau: Cho (s_n)_{n\geq 1}(t_n)_{n\geq 1} là hai dãy các số hữu tỷ thỏa mãn đồng thời các điều kiện sau:

1) (s_n)_{n\geq 1}(t_n)_{n\geq 1} không phải là dãy hằng;

2) \forall i,j\in\mathbb{N}^*,\quad (s_i-s_j)(t_i-t_j)\in\mathbb{Z}.

Chứng minh rằng tồn tại số hữu tỷ r sao cho r(s_i-s_j)\in\mathbb{Z}\dfrac{t_i-t_j}{r}\in\mathbb{Z},\quad\forall i,j\in\mathbb{N}^*.

Đây là bài toán số 6 trong đề thi chọn HSG QG của Mĩ năm 2009 (USAMO 2009).

Lời giải 1. Ta có ba nhận xét sau:

1) Nếu \sigma:\mathbb{N}^*\to \mathbb{N}^* là một song ánh thì hai dãy (s_{\sigma(n)})_{n\geq 1}(t_{\sigma(n)})_{n\geq 1} cũng thỏa mãn các giả thiết của bài toán;

2) Nếu s,t là các số hữu tỷ thì hai dãy (s_{n}+s)_{n\geq 1}(t_{n}+t)_{n\geq 1} cũng thỏa mãn các giả thiết của bài toán.

3) Tồn tại cặp chỉ số (i,j) sao cho (s_i-s_j)(t_i-t_j)\not=0.

Thật vậy, do dãy (s_i) không phải dãy hằng nên tồn tại (i,j) sao cho s_i\not=s_j. Nếu t_i\not=t_j thì (i,j) là cặp phải tìm. Nếu t_i=t_j, ta chọn k sao cho t_k\not=t_i, khi s_k=s_i ta chọn (j,k), khi s_k\not=s_i ta chọn (k,i).

Trở lại bài toán.

Bởi các nhận xét trên ta có thể giả sử s_1=t_1=0,s_2\not=0t_2\not=0.

Ta sẽ chứng minh tồn tại các số hữu tỷ dương  A,B sao cho AB, As_jBt_j là các số nguyên với mọi j.

Với mọi i,j ta có (s_i-s_1)(t_i-t_1)=s_it_i(s_i-s_j)(t_i-t_j)=s_it_i+s_jt_j-(s_it_j+s_jt_i), suy ra s_it_is_it_j+s_jt_i là các số nguyên. Viết s_j,t_j dưới dạng tối giản ta được \displaystyle s_j=\frac{p_j}{q_j},t_j=\frac{u_j}{v_j},\quad\forall j. Theo trên ta có s_2t_j+s_jt_2 là số nguyên với mọi j, suy ra với mọi j ta có q_j|u_2q_2. Chọn A=|q_2u_2|>0 ta có As_j là số nguyên với mọi j. Tương tự ta cũng tìm được số nguyên dương B sao cho Bt_j là số nguyên với mọi j.

Chọn cặp (A,B) như trên sao cho AB nhỏ nhất, ta thấy AB phải bằng 1 và khi đó bài toán sẽ được giải. Thật vậy, nếu AB>1 thì nó có ước nguyên tố p, suy ra ABs_jt_j=(As_j)(Bt_j) chia hết cho p với mọi j, do đó với mọi j thì As_j hoặc Bt_j sẽ chia hết cho p. Xét các trường hợp:

Trường hợp 1: p chia hết As_j với mọi j.

Ta thấy cặp (A/p,B) cũng thỏa mãn và có tích bằng \dfrac{AB}{p}<AB, vô lí.

Trường hợp 2: Tồn tại j để p không chia hết As_j.

Khi đó ta có Bt_j chia hết cho pBt_i không chia hết cho p với i nào đấy (do cách chọn (A,B)), suy ra AB(s_it_j+s_jt_i)-(As_i)(Bt_j)=(As_j)(Bt_i) không chia hết cho p, vô lí.

Lời giải 2. Đây là lời giải của Paul Christiano, huy chương Bạc tại IMO 2008.

Ta cho các số hữu tỷ trong lời giải này đều ở dạng tối giản.

Không mất tính tổng quát ta có thể giả sử s_1=t_1= 0, t_2\not=0s_2 = 1. Khi đó t_2=k là số nguyên (vì (s_2 - s_1)(t_2 - t_1) là số nguyên), và

(s_i - 1)(t_i - k) = s_it_i + k - (t_i + ks_i) \in \mathbb{Z},\quad i\in\mathbb{N}^*.s_it_i = (s_i - 0)(t_i - 0) = (s_i - s_1)(t_i - t_1)\in\mathbb{Z},\quad\forall i\in\mathbb{N}^*, suy ra t_i + ks_i \in \mathbb{Z},\quad \forall i\in\mathbb{N}^*. Ta thấy ks_i phải là số nguyên với mọi số nguyên dương i, thật vậy nếu tồn tại số nguyên dương i sao cho ks_i \not\in \mathbb{Z} thì mẫu của s_i có ước nguyên tố p không chia hết k, suy ra t_i+ks_i không phải là số nguyên vì mẫu của t_i cũng không chia hết cho p (do s_it_i là số nguyên), vô lí. Từ đó ta có t_i \in \mathbb{Z} với mỗi số nguyên dương i.

Nếu cần thì chia các số hạng của dãy (t_i) cho cùng một số nguyên dương và nhân các số hạng của dãy (s_i) với số nguyên dương đó, ta có thể coi ước chung lớn nhất của tất cả các số hạng của dãy (t_i) bằng 1, và tất nhiên, vẫn có số nguyên k\not=0 thỏa mãn ks_i\in\mathbb{Z} với mọi số nguyên dương i.

Ta sẽ chứng minh rằng s_i\in\mathbb{Z} với mọi số nguyên dương i, và khi đó bài toán sẽ được giải hoàn toàn. Thật vậy, giả sử tồn tại số nguyên dương i sao cho s_i không phải là số nguyên. Khi đó có số nguyên tố p là ước của mẫu của s_i. Gọi j là số nguyên dương thỏa mãn p không chia hết t_j (tồn tại j như thế vì ước chung lớn nhất của các t_n bằng 1). Vì s_it_i là số nguyên nên p chia hết t_i, do đó t_i - t_j không chia hết cho p. Vì s_jt_j là số nguyên và p không chia hết t_j nên p không chia hết mẫu của s_j, do đó s_i - s_j có mẫu không chia hết cho p. Nhưng khi đó (s_i - s_j)(t_i-t_j) có mẫu chia hết cho p, và bởi thế nó không phải là số nguyên, vô lí.

Continue reading “VMO training 2017 – Part 5”

Problems From the Book


Tôi giới thiệu với các bạn chuẩn bị tham dự kì thi chọn đội tuyển Toán Việt Nam tham dự IMO (Vietnam TST) hai cuốn sách sau đây:

1) “Problems From the Book” của Titu Andreescu và Gabriel Dospinescu.

Đây là đoạn mô tả trên trang của nhà xuất bản XYZ: “The authors provide a combination of enthusiasm and experience which will delight any reader. In this volume they present innumerable beautiful results, intriguing problems, and ingenious solutions. The problems range from elementary gems to deep truths. A trully delightful and highly instructive book, this will prepare the engaged reader not only for any mathematics competition they may enter but also for a life time of mathematical enjoyment. A must for the bookshelves of both aspiring and seasoned mathematicians.”

Bạn mua từ nhà xuất bản hoặc tìm E-book.

2) “Straight from the Book” của Titu Andreescu và Gabriel Dospinescu.

Cuốn 1) có rất nhiều bài tập về nhà, và nhiều bài rất khó. Cuốn 2) sẽ có lời giải của hầu hết các bài tập về nhà trong 1). Đây là đoạn mô tả trên trang của nhà xuất bản XYZ: “This book is a compilation of many suggestions, much advice, and even more hard work. Its main objective is to provide solutions to the problems which were originally proposed in the first 12 chapters of “Problems from the Book”. The volume is far more than a collection of solutions. The solutions are used as motivation for the introduction of some very clear expositions of mathematics. And this is modern, current, up-to-the-minute mathematics. This is absolutely state-of-the-art material. Everyone who loves mathematics and mathematical thinking should acquire this book.”

Editorial Reviews

(Đoạn này được lấy từ amazon. )

This is an exceptionally well-written book. The material is arranged in small chapters, with brief theory in the beginning of each chapter followed by a set of exceptionally difficult problems with solutions. These solutions are elegant, innovative and beautiful. You learn a lot from the solutions. In every page, you will discover one or more clever steps/tricks that will make you wonder “How come I could not think of that?”. If you are preparing for Mathematics Olympiads, working through this book will boost your confidence 100 fold. If you are a math enthusiast, you will enjoy the material – most of it is “Mathematical poetry”. Grab it before it gets sold out! –Dr S Muralidharan

Problems from the Book is rife with elegant mathematical pursuits that are well worth the effort of exploring and solving. For high schoolers up through University students, the book’s problems will illustrate important concepts and provide hours of fun at every sitting. –David Cordeiro

This book is a treasure of the mathematical gems: many many very nice problems and results, historic notes and useful comments. Readers will also find many very interesting original problems from the authors of the book and from others. If you want to develop your mathematical skills in problem solving and your knowledge in diverse mathematical branches, you will definitely find many instructive topics throughout this book. Many thanks to Prof. Andreescu and his colleagues for their invaluable books and problems. I do highly recommend this book and all other books by Prof. Andreescu to all mathematics lovers: from the pupils preparing to participate in mathematical contests to people searching excitement in mathematics. The book contains the following 23 chapters, in addition to preface, bibliography and index: 1. Some Useful Substitutions 2. Always Cauchy-Schwarz … 3. Look at the Exponent 4. Primes and Squares 5. T2’s Lemma 6. Some Classical Problems in Extremal Graph theory 7. Complex Combinatorics 8. Formal Series Revisited 9. A Brief Introduction to Algebraic Number Theory 10. Arithmetic Properties of Polynomials 11. Lagrange Interpolation Formula 12. Higher Algebra in Combinatorics 13. Geometry and Numbers 14. The Smaller, The Better 15. Density and Regular Distribution 16. The Digit Sum of Positive Integer 17. At the Border of Analysis and Number Theory 18. Quadratic Reciprocity 19. Solving Elementary Inequalities Using Integrals 20. Pigeonhole Principle Revisited 21. Some Useful Irreducibility Criteria 22. Cycles, Paths and Other Ways 23. Some Special Applications of Polynomials –H. A. Shah Ali.

Bạn mua từ nhà xuất bản hoặc tìm E-book. Continue reading “Problems From the Book”

Một số trang về Olympic Toán


Tôi có post một số trang về Olympic Toán trên facebook  nhưng nó cứ chìm xuống khi đăng một bài khác, vì thế nên tôi lập topic này để lưu các link đó lại.

P. S. Hãy góp link bằng cách comment các bạn nhé! 🙂

Continue reading “Một số trang về Olympic Toán”

USA TSTST 2016


Bài 1. Cho A = A(x,y)B = B(x,y) là các đa thức hai biến với hệ số thực. Giả sử A(x,y)/B(x,y) là đa thức của x với vô hạn y, và một đa thức của y với vô hạn x. Chứng minh rằng B chia hết A, nghĩa là tồn tại đa thức C với hệ số thực thỏa mãn A = B \cdot C.

Bài 2. Cho tam giác ABC với trực tâm H và tâm đường tròn ngoại tiếp O. Kí hiệu M, N lần lượt là trung điểm của \overline{AH}, \overline{BC}. Giả sử đường tròn \gamma đường kính \overline{AH} cắt đường tròn ngoại tiếp tam giác ABC tại G \neq A, và cắt đường thẳng AN tại Q \neq A. Tiếp tuyến của \gamma tại G cắt OM tại P. Chứng minh rằng các đường tròn ngoại tiếp tam giác GNQMBC cắt nhau tại một điểm T trên \overline{PN}.

Bài 3. Tồn tại hay không một đa thức Q(x) khác hằng với hệ số nguyên sao cho với mỗi số nguyên n > 2, các số Q(0), \; Q(1), Q(2),  \; \dots, \; Q(n-1) nhận nhiều nhất 0.499n dư khi chia cho n. Continue reading “USA TSTST 2016”

USA TST 2016 (2)


Phần 1: https://nttuan.org/2016/06/30/topic-791/

21/01/2016

Bài 4. Cho \sqrt 3 = 1.b_1b_2b_3 \dots _{(2)} là biểu diễn nhị phân của \sqrt 3. Chứng minh rằng với mỗi số nguyên dương n, ít nhất một trong các chữ số b_n, b_{n+1}, \dots, b_{2n} bằng 1.

Bài 5. Cho số nguyên n \ge 4. Tìm tất cả các hàm W : \{1, \dots, n\}^2 \to \mathbb R sao cho với mỗi phân hoạch [n] = A \cup B \cup C, ta có \displaystyle\sum_{a \in A} \sum_{b \in B} \sum_{c \in C} W(a,b) W(b,c) = |A| |B| |C|. Continue reading “USA TST 2016 (2)”